Contents

PRACTICAL NO.1
UNDERSTANDING THE REGISTERS OF 8086 MICROPROCESSOR
PRACTICAL NO.2
STUDY THE "MOV" INSTRUCTION
PRACTICAL NO.37
UNDERSTANDING THE ADRESSING MODES OF 8086 MICRO PROCESSOR7
PRACTICAL NO.4
IMPLEMENTING THE IMMIDIATE ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086 EMULATOR
PRACTICAL NO.5
IMPLEMENTING THE REGISTER ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086 EMULATOR
PRACTICAL NO.6
UNDERSTANDING THE MEMORY ADRESSING MODE
PRACTICAL NO.714
UNDERSTANDING MEMORY DIRECT ADDRESSING MODE14
PRACTICAL NO.815
USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H, 10H, 15H, 20H, 25H) TO MEMORY
PRACTICAL NO.9
USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H,10H,15H,20H,25H) FROM MEMORY TO REGISTER
PRACTICAL NO.10
USING REGISTER INDIRECT ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER
PRACTICAL NO.11
USING REGISTER RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER
PRACTICAL NO.12
USING BASE INDEX ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER 24
PRACTICAL NO.13

USING BASE INDEX RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H)	
REGISTER	
PRACTICAL NO.14	
DEMONSTATING MOV INSTRUCTION SET	
PRACTICAL NO.15	
DEMONSTATING XCHANGE INSTRUCTION SET	
PRACTICAL NO.16	
DEMONSTATING PUSH INSTRUCTION SET	
PRACTICAL NO.17	
DEMONSTATING POP INSTRUCTION SET	
PRACTICAL NO.18	
DEMONSTATING PUSHF INSTRUCTION SET	
PRACTICAL NO.19	
DEMONSTATING POPF INSTRUCTION SET	
PRACTICAL NO.20	
DEMONSTATING ADD INSTRUCTION SET	
PRACTICAL NO.21	40
DEMONSTATING SUB INSTRUCTION SET	40
PRACTICAL NO.22	42
DEMONSTATING MUL INSTRUCTION SET	
PRACTICAL NO.23	44
DEMONSTATING DIV INSTRUCTION SET	44
PRACTICAL NO.24	46
DEMONSTATING INC INSTRUCTION SET	46
PRACTICAL NO.25	48
DEMONSTATING DEC INSTRUCTION SET	
PRACTICAL NO.26	50
DEMONSTATING NOT INSTRUCTION SET	50
PRACTICAL NO.27	52
DEMONSTATING AND INSTRUCTION SET	52
PRACTICAL NO.28	54
DEMONSTATING OR INSTRUCTION SET	54

PRACTICAL NO.29	55
DEMONSTATING XOR INSTRUCTION SET	55

UNDERSTANDING THE REGISTERS OF 8086 MICROPROCESSOR

THE 8086 microprocessor has total of 14 registers which can be classified as:

REGISTER NAME	DESCRIPTION	SIZE
AX)	GENERAL PURPOSE REGISTER USED TO STORE	16 BIT S
BX	DATA .	16 BITS
CX GENERAL X		16 BITS
DX J G a		16 BITS
CS (CODE SEGMENT)	STORES BASE ADRESS OF CODE SEGMENT	16 BITS
IP (INSTRUCTION POINTER)	STORES OFFSET ADRESS OF CODE SEGMENT	16 BITS
SS (STACK SEGMENT)	STORES BASE ADRESS OF STACK SEGMENT	16 BITS
SP (STACK POINTER)	STORES OFFSET ADRESS OF STACK POINTER	16 BITS
BP (BASE POINTER)		16 BITS
SI (SOURCE INDEX)		16 BITS
DI (DESTINATION INDEX)		16 BITS
DS (DATA SEGMENT)		16 BITS
ES (EXTRA SEGMENT)		16 BITS
FLAG (FLAG REGISTER)		8 BITS

General purpose register can also be divided into two sets of 8 bits as higher bits H and lower bits L i.e least significant bits and most significant bits.

HIGHER BITS H	LOWER BITS L
АН	AL
ВН	BL
СН	CL
DH	DL
	АН ВН СН

🗰 emu	ılator: n	oname	e.bin_							
file ma	ith debu	g view	v externa	I virtual dev	vices – virtual driv	e help				
	·	relo	· · · ·	(step back	single step	▶ run	step delay ms: 0			
registe	registers 0100:0000 0100:0000									
AX	00 00		01000:		1		, 00003h 🔺			
ВX	00 00	F	01002:	00 000	NULL	XCHG A	, BX			
CX	00 00	ī	01003: 01004:	06 006	ิ ₽	INC AX INC AX				
DX	00 00	ī	01005: 01006:	93 147	NULL ô	INC AX DEC AX				
CS	0100	-	01007: 01008:		e	DEC AX DEC AX				
IP	0000	-	01009: 0100A:		e H	MOU CX, MOU DX,				
SS	0100	-	0100B: 0100C:		H H	PUSH AN PUSH BY	κ 📃			
SP	FFFE	-	0100D: 0100E:	B9 185	: BEEP	PUSH CA	K I			
BP	0000		0100F:	00 000	NULL	POP AX POP CX	1			
SI	0000		01010:	10 016	▶	POP DX				
DI	0000		01012: 01013:	50 080	NULL P	POP BX NOP				
DS	0100		01014: 01015:		S Q	NOP	-			
ES	0100		screen	source	reset aux	vars d	lebug stack flags			

STUDY THE "MOV" INSTRUCTION

MOV instruction is a very common and basic command used in micro processor to copy contents from source to destination. The general syntax of MOV instruction is:

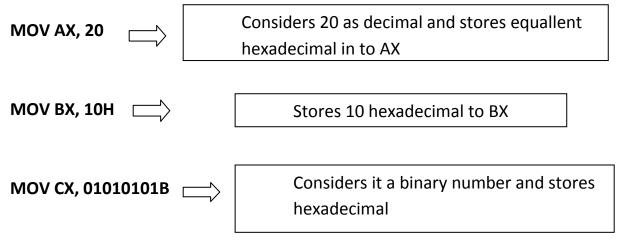
MOV <SPACE> DESTINATION, SOURCE

DESTINATION can be the name of any register or memory location

Source can be any register name or memory location or any value in decimal, hexadecimal or binary

UNDERSTANDING THE ADRESSING MODES OF 8086 MICRO PROCESSOR

The addressing mode in literature came from two words address which means to talk to share some information and mode which means method. So from addressing mode it means that by which method we communicate with 4micro processor to give instructions.


Addressing modes fall into three major categories'

- 1. Immediate addressing mode
- 2. Register addressing mode
- 3. Memory addressing mode.

In immediate addressing mode data is stored in register of 8086 microprocessor form input given by user and contents of register will be taken from instructions. The general syntax for immediate addressing mode is

MOV <SPACE> REGISTER, VALUE

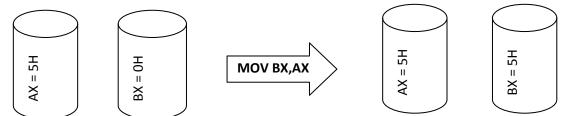
Using immediate addressing mode, contents in any number system can be transferred to registers. Only need is to specify the number system suffix after the number to be entered, for example

IMPLEMENTING THE IMMIDIATE ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086 EMULATOR

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- 3. For transferring content of 10H to register ax write the command as **MOV AX, 10H** and write the comments as appropriate.
- 4. For transferring a binary number as 01010101using immediate addressing mode, write the command **MOV BX, 01010101B** and write comments as appropriate.
- 5. For transferring a decimal number of 20 write command as **MOV CX, 20** and comments as appropriate.
- 6. After completing the code click on **EMULATE** button and run the program in single steps.
- 7. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

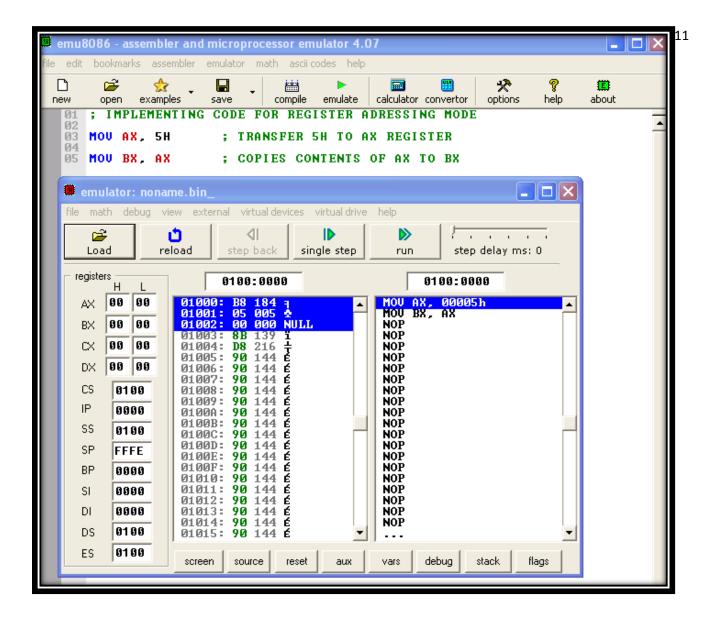

;IMPLEMENTING IMMIDDIATE ADRESSING MODE	🗃 👷	ler emulator math ascii codes		options hel	
mov BX,20 ; STORES EQUALENT IN HEXADECIMAL TO EX REGISTER MOU CX,01010101B ; STORES EQUALLENT HEXADECIMAL TO CX REGISTER emulator: noname.bin				puons nei	p about
mov BX,20 ; STORES EQUALENT IN HEXADECIMAL TO EX REGISTER MOU CX,01010101B ; STORES EQUALLENT HEXADECIMAL TO CX REGISTER emulator: noname.bin					
MOU CX,01010101B ; STORES EQUALLENT HEXADECIMAL TO CX REGISTER	mov AX,10H	; STORES 10H TO AX	REGISTER		
# emulator: noname.bin_ image: step in the image: s	mov BX,20	; STORES EQUALENT	IN HEXADECIMAL T	O BX REGIST	ER
# emulator: noname.bin_ image: step in the image: s					
file math debug view external witual devices vitual drive help Load reload step back single step run step delay step delay registers 01000: B8 184 - mou mou step delay mou Ax 90 10 01001: 10 016 mou Mou AX, 00014h - AX 90 10 1001: 10 016 - Mou AX, 00014h - AX 90 10 1001: 10 016 - Mou AX, 00014h - - Mou AX, 00014h - - NOP	MOV CX,01010	101B ; STORES EQU	ALLENT HEXADECIM	AL TO CX RE	GISTER
file math debug view external witual devices vitual drive help Load reload step back single step run step delay step delay registers 01000: B8 184 - mou mou step delay mou Ax 90 10 01001: 10 016 mou Mou AX, 00014h - AX 90 10 1001: 10 016 - Mou AX, 00014h - AX 90 10 1001: 10 016 - Mou AX, 00014h - - Mou AX, 00014h - - NOP					
Image: Step Back Single step run step delay ms: 0 registers 8188:80899 8188:80899 8188:80899 Ax 88 19 8180:80899 8188:80899 Ax 88 14 01001::10 916 Bx 88 14 10 916 10 Bx 88 14 10 916 10 916 Bx 88 14 10 916 10 916 916 Bx 88 14 919 91992::90 90 NULL MOU MU 82. 90014h Bx 98 98 91995::90 90 90 NULL NOP NOP DX 98 98 91444 6 NOP NOP NOP S5 9188 98 144 6 NOP NOP NOP S5 9188 98 91444 6 NOP NOP NOP S6 91898 99 1444 6 NOP NOP NOP	🛢 emulator: non	name.bin_			
Load reload step back single step run step delay ms: 0 registers 0100:0009 0100:0009 0100:0009 0100:0009 AX 00 10 01000: B8 184 1 MOU AX. 00010h AX 00 10 01000: B8 184 1 MOU AX. 00010h AX 00 10 01002: 00 0000 NULL MOU AX. 00014h BX 00 14 020 1 MOU CX. 00055h 01002: 00 0000 NULL NOP NOP NOP DX 00 00 144 00 NOP O10002: 90 144 01002: 90 144 000 NOP SS 0100 90 144 000 NOP NOP SP FFFE 0100E: 90 144 000 NOP NOP SS 0100 90 144 000 NOP NOP SI 0009 1444 0000 NOP NOP	file math debug	view external virtual devices	virtual drive help		
Load reload step back single step run step delay ms: 0 registers 0100:0009 0100:0009 0100:0009 0100:0009 AX 00 10 01000: B8 184 1 MOU AX. 00010h AX 00 10 01000: B8 184 1 MOU AX. 00010h AX 00 10 01002: 00 0000 NULL MOU AX. 00014h BX 00 14 020 1 MOU CX. 00055h 01002: 00 0000 NULL NOP NOP NOP DX 00 00 144 00 NOP O10002: 90 144 01002: 90 144 000 NOP SS 0100 90 144 000 NOP NOP SP FFFE 0100E: 90 144 000 NOP NOP SS 0100 90 144 000 NOP NOP SI 0009 1444 0000 NOP NOP	ræ ∣				
AX 00 10 01000: B8 184 1 A AX 00 10 01001: 10 016 A MOU AX. 00010h BX 00 14 01002: 00 000 NULL MOU AX. 00010h BX 00 14 01002: 00 000 NULL MOU AX. 00010h CX 00 55 01004: 14 020 MU NOP NOP DX 00 90 01005: 00 00 NULL NOP NOP DX 00 00 01007: 55 085 U NOP NOP CS 01008: 00 00 01007: 90 144 € NOP NOP SS 01008: 90 144 € NOP NOP NOP NOP SS 01008: 90 144 € NOP NOP NOP NOP SF FFFE 0100E: 90 144 € NOP NOP NOP SI 0000 01011: 90 144 € NOP NOP NOP NOP					
AX 00 10 01000: B8 184 1 A AX 00 10 01001: 10 016 A MOU AX. 00010h BX 00 14 01002: 00 000 NULL MOU AX. 00010h BX 00 14 01002: 00 000 NULL MOU AX. 00010h CX 00 55 01004: 14 020 MU NOP NOP DX 00 90 01005: 00 00 NULL NOP NOP DX 00 00 01007: 55 085 U NOP NOP CS 01008: 00 00 01007: 90 144 € NOP NOP SS 01008: 90 144 € NOP NOP NOP NOP SS 01008: 90 144 € NOP NOP NOP NOP SF FFFE 0100E: 90 144 € NOP NOP NOP SI 0000 01011: 90 144 € NOP NOP NOP NOP					
BX 08 14 01001: 10 10 04			01	00:0009	
BX 06 14 01002:00 000 NULL NOP 01003:BB BB 17 NOP NOP DX 06 55 01004:14 020 NOP DX 06 09 01005:00 0000 NULL NOP DX 06 09 01005:00 0000 NULL NOP CS 0100 01005:00 0000 NULL NOP 01007:55 085 0 01007 NOP 01008:00 01008:00 0000 NULL NOP 01008:00 01008:00 0144 É NOP SS 0100 01444 É NOP SP FFFE 0100E:90 144 É NOP BP 0800 01011:90 144 É NOP SI 0800 01011:90 144 É NOP DI 06060 0101:390 144 É NOP DI 06060 0101:390 144 É NOP DI 06060 0101:1:90 144 É NOP	AX 00 10	01000: B8 184 7			_
CX 06 55 01004:: 14 14 020 NOP DX 08 00 01005:: 00 000 NULL NOP DX 08 00 01007:: 55 085 NOP NOP CS 0100 01007:: 55 085 NOP NOP IP 0000 01007:: 55 085 NOP NOP SS 0100 01007:: 90 144 NOP NOP SS 0100 01007: 90 144 NOP NOP SP FFFE 0100D: 90 144 NOP NOP SP FFFE 0100E: 90 144 NOP NOP SI 0000 01011: 90 144 NOP NOP SI 0000 01012: 90 144 NOP NOP DI 06060 01011: 90 144 NOP NOP SI 0000 01012: 90 144 NOP NOP DI 06060 01013: 90 144 NOP NOP	BX 00 14	01002: 00 000 NULI	MOU CX,	00055h	
DX 00 00 01006: B9 185 ¦i NOP 01007: 55 085 0 NOP NOP IP 0009 01008: 00 000 NULL NOP IP 0009 01008: 00 0144 é NOP SS 0100 0100B: 90 144 é NOP SP FFFE 0100C: 90 144 é NOP BP 0000 0100E: 90 144 é NOP SI 0000 01011: 90 144 é NOP DI 0000 01012: 90 144 é NOP DI 0000 010144 é NOP NOP	CX 00 55	01004: 14 020 9	NOP		
CS 0100 01000 000 NULL NOP IP 0009 01000 90 144 NOP SS 0100 01000 90 144 NOP SS 0100 01000 90 144 NOP SP FFFE 01000 90 144 NOP SP FFFE 01000 90 144 NOP BP 0000 0100E 90 144 NOP SI 0000 01010 90 144 NOP DI 0000 01011 90 144 NOP DI 0000 01013 90 144 NOP	DX 00 00	01006: B9 185 {			
IP 0009 01009: 90 144 £ NoP SS 01009: 90 144 £ NOP SS 01000: 90 144 £ NOP SP FFFE 01000: 90 144 £ NOP BP 0000 0100F: 90 144 £ NOP SI 0100F: 90 144 £ NOP SI 0000 01010: 90 144 £ NOP DI 0000 01012: 90 144 £ NOP DI 0000 01012: 90 144 £ NOP DI 0000 01014: 90 144 £ NOP DI 0000 01014: 90 144 £ NOP	CS 9166				
SS 0100B: 90 144 6 NOP SP FFFE 0100D: 90 144 6 NOP SP FFFE 0100D: 90 144 6 NOP BP 0000 0100E: 90 144 6 NOP SI 0000 01010: 90 144 6 NOP SI 0000 01010: 90 144 6 NOP DI 0000 01011: 90 144 6 NOP DI 0000 01011: 90 144 6 NOP DI 0000 01011: 90 144 6 NOP DI 0000 01013: 90 144 6 NOP DC 0104 90 144 6 NOP 0	IP 8889	01009: 90 144 É	NOP		
SP FFFE 0100D: 90 144 É NOP BP 0000: 90 144 É NOP BP 0000: 90 144 É NOP SI 0000: 0144 É NOP DI 0000: 0144 É NOP DI 0000: 0144 É NOP DI 0000: 0144 É NOP	0001	0100B: 90 144 É	NOP		
BP 0000 0100F: 90 144 E NOP BP 0000 0100F: 90 144 NOP NOP SI 0000 01011: 90 144 NOP NOP DI 0000 01012: 90 144 NOP NOP DI 0000 01013: 90 144 NOP NOP DI 0000 01013: 90 144 NOP NOP	0100	0100D: 90 144 É	NOP		
Dr 0000 01010: 90 144 £ NOP SI 0000 01011: 90 144 £ NOP DI 0000 01012: 90 144 £ NOP DI 0000 01013: 90 144 £ NOP DI 0000 01013: 90 144 £ NOP DC 01014: 90 144 £ NOP					
01 0000 01012: 90 144 E NOP DI 0000 01013: 90 144 E NOP DC 0104: 90 144 E NOP		01010: 90 144 É	NOP		
01014: 90 144 É NOP		01012: 90 144 É	NOP		
					-

WORK SHEET:

S.NO	REGISTERS	INITIAL	1 ST STEP	2 ND STEP	3 RD STEP	4 [™] STEP
	VALUES					
1	AX					
2	BX					
3	СХ					
4	CS					
5	IP					

IMPLEMENTING THE REGISTER ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086 EMULATOR

In the register addressing mode using **MOV** instruction contents of one register is copied to the other register.

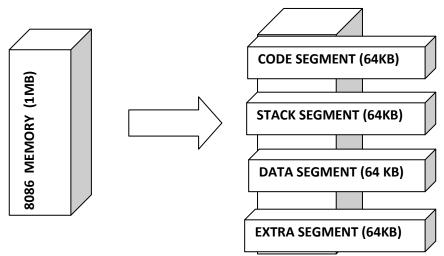

In the above example BX register is destination register and AX is source register. Recall from previous example that in MOV instruction uses Destination and Source as

MOV BX,AX

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- 3. For transferring content of 5H to register AX write the command as **MOV AX, 5H** and write the comments as appropriate.
- 4. For transferring the contents of AX to BX write command MOV BX,AX
- 5. After completing the code click on **EMULATE** button and run the program in single steps.
- 6. Observe the output of following registers and fill the worksheet as given.

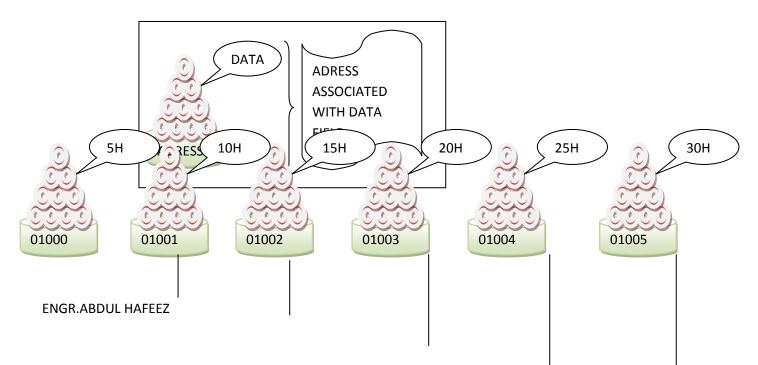
- 7. Never use infinite loop in any coding.
- 8. Always emulate the code in single instruction.
- 9. Care fully observes the output of registers.



WORK SHEET:

S.NO	REGISTERS	INITIAL	1 ST STEP	2 ND STEP	3 RD STEP	4 [™] STEP
	VALUES					
1	AX					
2	BX					
3	CS					
4	IP					

UNDERSTANDING THE MEMORY ADRESSING MODE


Memory addressing mode is used to transfer data from memory to register and from register to memory by using **MOV** instruction. The total memory of 8086 microprocessor is divided into four parts or segments that is

CONCEPT OF ADRESSES:

Address specifies the memory location. Each memory location is specified by a unique address. Accessing a specific memory location involves base addresses and offset addresses.

Base address is the address from which a specific segment starts and accessing any memory location within that segment involves offset address. Each memory location is accessed by that reference address called base address and by increasing offset value different memory fields are accessed.

	<u>1H</u>				
	2H	>			
	3H		>		
	4H			\rightarrow	
OFFSET					
SH SH	[
ō	5H				
	•				

Increment in base address to access a specific memory location is called offset address.

Memory addressing modes can be classified into five categories as:

- 1. Direct addressing mode
- 2. Register indirect addressing mode
- 3. Register relative addressing mode
- 4. Base index addressing mode
- 5. Base index relative addressing mode

Each memory addressing mode utilized the fact that the difference is that method of giving offset address is different for every addressing mode.

UNDERSTANDING MEMORY DIRECT ADDRESSING MODE

In memory direct addressing mode offset is provided directly in the instrution and contents of data segment memory is used.

Transfering data from register to memory:

Suppose data segment base address is 0100 as data. Physical address is calculated as

P.A = DS*10H

Memory location can be accesed by adding offset into physical address. MOV instruction for this case can be modified as:

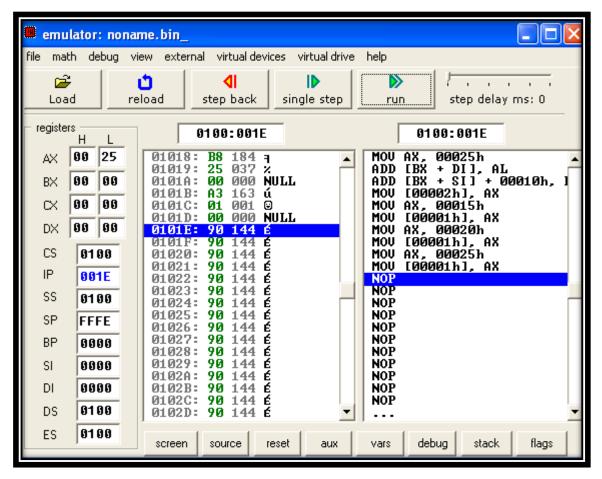
MOV DESTINATION, SOURCE

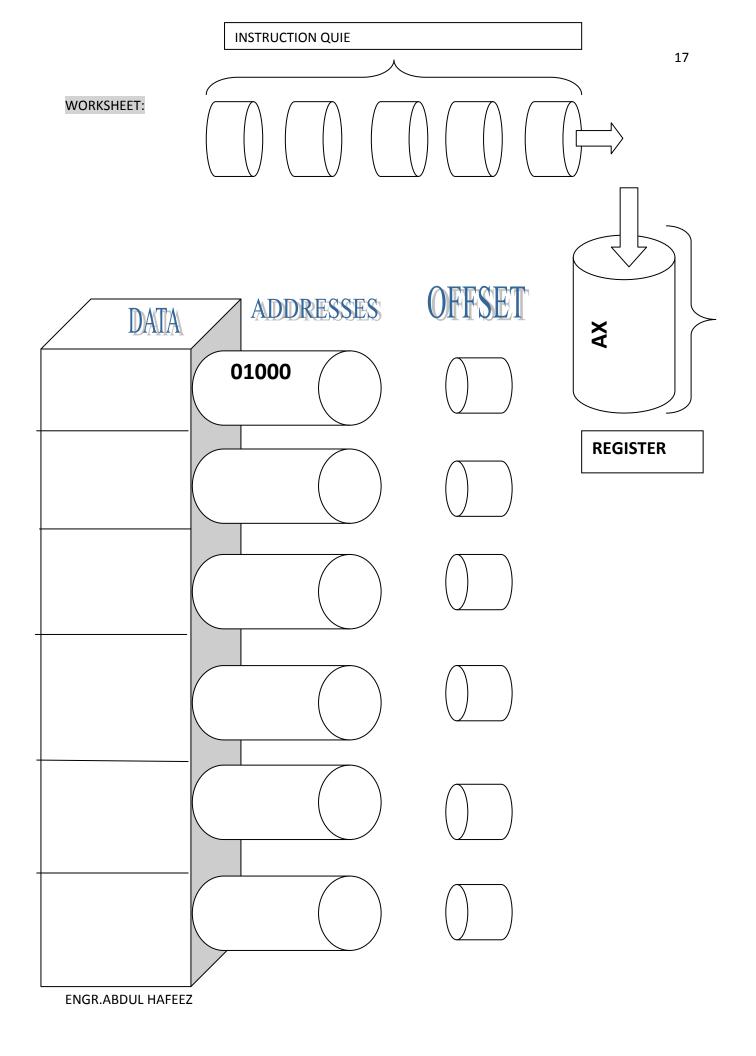
MOV <SPACE> [OFFSET], REGISTER

By default memory of data segment DS is accessed.

DS shows base address of data segment and offset is given in the instruction field directly

🏾 emu	lator	: no	nam	ne.bin_									
file ma	th d	ebug	vie	w extern	ial vi	rtual de	evices	virtual drive	e help				
Loa			_	oad		d back	sin	igle step	ru		step de	i i i elay ms: 0	
– registe	rs H	L			0100):000	0			010):0000		
AX	00	00		01000 01001		184	1	-	MOU	AX, 0	0005 h	.u	•
В×	00	00	1	01001		005 000	∲ NULL		MOU NOP	LOOOO	1h], A	17	
cx	00	00		01003: 01004:		163 001	ú ⊌		NOP NOP				
DX	00	00		01005:	00	000	NULL		NOP				
DX	100	100		01006:		144 144	É		NOP NOP				
CS	01	00		01008:	90	144	Ĕ		NOP				
IP	00	00		01009: 01004:	_	144	Ê		NOP NOP				
SS	01	00		0100B:	90	144	Ĕ		NOP				
		_		0100C: 0100D:		144	É		NOP NOP				
SP	FF	FE		0100E:	90	144	É		NOP				
BP	00	00		0100F: 01010:		144	É		NOP NOP				
SI	00	00		01011:	90	144	Ĕ		NOP				
DI	0.0	00		01012: 01013:		144	É		NOP NOP				
	_	-	•	01014:	- 90	144	É		NOP				
DS	61	00		01015:	90	144	É	•					•
ES	01	00		screen	sou	irce	reset	aux	vars	debug	g sta	ck flag	s


USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H, 10H, 15H, 20H, 25H) TO MEMORY


PROCEDURE:

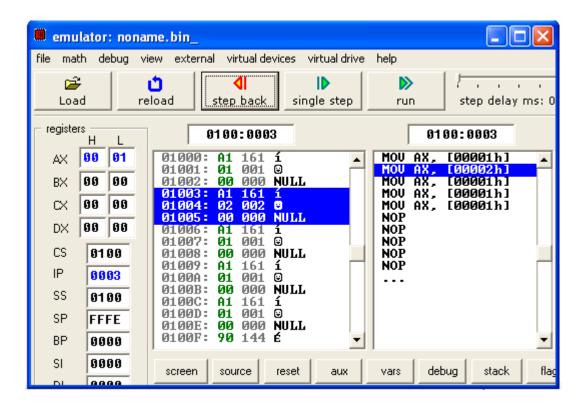
- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- 3. For transferring content of 5H to register AX write the command as **MOV AX, 5H** and write the comments as appropriate.
- 4. For transferring the contents of AX to memory in data segment with offset of 1H write command **MOV [1H],AX**
- 5. For transferring content of 10H to register AX write the command as **MOV AX, 10H** and write the comments as appropriate.
- 6. For transferring the contents of AX to memory in data segment with offset of 2H write command **MOV [2H],AX**
- 7. For transferring content of 15H to register AX write the command as **MOV AX, 15H** and write the comments as appropriate.
- 8. For transferring the contents of AX to memory in data segment with offset of 3H write command **MOV [3H],AX**
- 9. Repeat the code up to 25H data field with offset of 5H
- 10. After completing the code click on **EMULATE** button and run the program in single steps.
- 11. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

🖲 emut	8086 - assembler	nd microprocessor	emulator 4.07		
file edit	bookmarks assemb	er emulator math as	scii codes help		
D new	🗃 👷 open examples	save comp		r convertor options	💡 🌐 help about
01 02 03			ECT ADDRESSING ,10H,15H,20H,29		<u> </u>
Ø5 Ø6	MOU AX, 5H		RS 5H TO REGIST ATE ADDRESSING		
09 10	MOU [1H], A)	; COPIES (; OFFSET (TO DATA SEGMEN	T WITH
13 14	MOU AX, 10H		ERS 10H TO REG TE ADDRESSING		
15 16 17 18	MOU [2H], A)	; COPIES (; OFFSET (TO DATA SEGMEN	T WITH
19 20 21	MOU AX, 15H		ERS 15H TO REGI ATE ADDRESSING		
22 23 24 25	MOU [1H], A)	; COPIES (; OFFSET (CONTENTS OF AX Of 3h	TO DATA SEGMEN	T WITH
	MOU AX, 20H		ERS 20H TO REGI ATE ADDRESSING		
	MOU [1H], A)	; COPIES (; OFFSET (TO DATA SEGMEN	т with
33 34 35	MOU AX, 25H		ERS 25H TO REGI ATE ADDRESSING		
36 37 38	MOU [1H], A)	; COPIES ; OFFSET		TO DATA SEGMEN	T WITH

USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H,10H,15H,20H,25H) FROM MEMORY TO REGISTER

PROCEDURE:


- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- 3. For transferring the contents of AX from memory in data segment with offset of 1H to AX write command **MOV AX,[1H]**
- 4. For transferring the contents of AX to memory in data segment with offset of 2H write command **MOV AX,[2H]**
- 5. For transferring the contents of AX to memory in data segment with offset of 3H write command **MOV AX,3[H]**
- 6. Repeat the code up to offset of 5H
- 7. After completing the code click on **EMULATE** button and run the program in single steps.
- 8. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

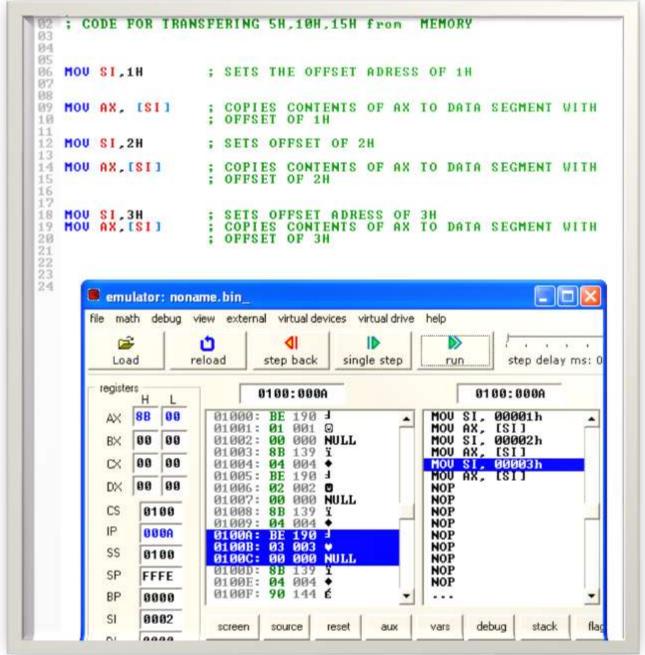
📖 en	1u8086 -	assembler a	nd micropro	ocessor emula	ator 4.07
------	----------	-------------	-------------	---------------	-----------

file edit bookmarks assembler emulator math ascii codes help

D new	De ope		👷 amples	- 🔒	-		## npile	► emulate	cal	🔜 culator	r con	遭 vertor	🛠 options	🧖 help	а
01 02 03				NG MEN Ransfi			REC1						MEMORY		_
04 05 06 07 08 09	MOU	AX,	[11]	! ;	COP OFFS		CON OF	ITENTS 1H	OF	AX	τo	DATA	SEGMENT	WITH	
10 11 12 13 14 15	MOU	AX,	[2H]	;	COP OFFS		CON OF	ITENTS 2H	OF	AX	то	DATA	SEGMENT	WITH	
16 17 18 19	MOU	AX,	[1H]	;	COP OFFS		COP OF	ITENTS 3H	OF	AX	то	DATA	SEGMENT	WITH	
20 21 22 23 24 25	MOU	AX,	[18]	;	COP OFFS		CON OF	ITENTS 4H	OF	AX	то	DATA	SEGMENT	WITH	
26 27 28	MOU	AX,	[1H]	÷	COP	ES	çor	TENTS	OF	AX	то	DATA	SEGMENT	WITH	

19

USING REGISTER INDIRECT ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER


The general syntax for memory indirect addressing mode is

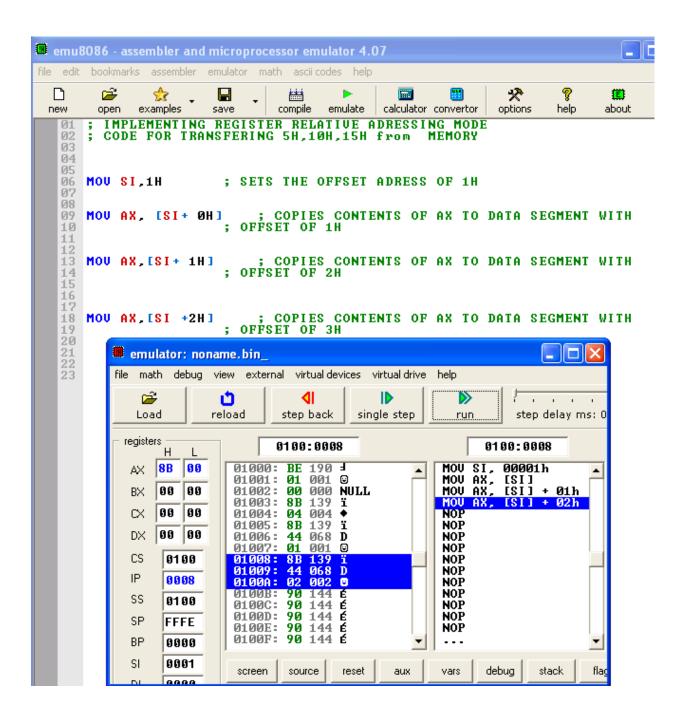
Mov "register", [SI OR DI OR BX]

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- For transferring offset of 1H to SI write command MOV SI,1H
- 4. For transferring the contents of memory in data segment to AX with offset of 1H write command **MOV AX,[SI]**
- 5. Repeat the code up to offset of 3H FOR DATA 10H &15H
- 6. After completing the code click on **EMULATE** button and run the program in single steps.
- 7. Observe the output of following registers and fill the worksheet as given.

- 8. Never use infinite loop in any coding.
- 9. Always emulate the code in single instruction.
- 10. Care fully observes the output of registers.

USING REGISTER RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER


The general syntax for register relative addressing mode is

$$EA = \begin{bmatrix} (BX) \\ (BP) \\ (DI) \\ (SI) \end{bmatrix} + Displacement$$

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator
- For transferring offset of 1H to SI write command MOV SI,1H
- 4. For transferring the contents of memory in data segment to AX with offset of 1H write command **MOV AX,[SI + 0h]**
- 5. For transferring the contents of memory in data segment with offset of 2H write command **MOV AX,[SI + 1h]** so the total offset will be of 2h
- 6. For transferring the contents of memory in data segment with offset of 2H write command **MOV AX,[SI + 2h]** so the total offset will be of 3h
- 7. After completing the code click on **EMULATE** button and run the program in single steps.
- 8. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

USING BASE INDEX ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER

The general syntax for BASE INDEX addressing mode is

$$\mathbf{EA} = \begin{bmatrix} (\mathbf{BX}) \\ (\mathbf{BP}) \end{bmatrix} + \begin{bmatrix} (\mathbf{DI}) \\ (\mathbf{SI}) \end{bmatrix}$$

The offset is provided in the base register and index register

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. For transferring the offset of 3h break them into sum of two parts i.e 3h = 2h+1h
- 4. For transferring offset part of 2H to SI write command MOV SI,2H
- 5. For transferring the 2nd part of offset to BX write the command as mov BX,1h
- 6. Now for transferring contents to AX write command as Mov AX, 5h.
- 7. For transferring contents of AX register to memory location at offset of 3h write command as Mov [bx + SI], AX
- 8. After completing the code click on **EMULATE** button and run the program in single steps.
- 9. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

9 emu ile ed			and microp							
D new 01	per oper	n example:	s save	- compi			cor convertor	options	🧖 help	🗰 about
02 03 04 05	MOU Mou	<mark>SI,2H</mark> BX,1H		INDEA	HDDKE9	SING N	JDE			-
06	🗰 emu	[SI+BX] Ilator: non	ame.bin_							1
	file ma Cá Loa	÷	view externa Peload	l virtual dev (step back	vices virtu			, , , step delay r	ns: 0	
	– registe	<u> </u>	1	100:0008			0100:	0008		
	AX BX	00 00 00 01	01000: 01001: 01002:		9 9 Null		OP OP OP		▲ _	
	CX	00 00	01003:	00 000	NULL	N	OP OP			
	DX	00 00		00 000 89 137 00 000		N	OP OP OP			
	CS	0100	01001.	90 144	É É	N N	OP OP OP			
	IP SS	0008	0100A: 0100B:		É	N	OP OP			
	SP	FFFE	0100C: 0100D: 0100E:	90 144	É É	N	OP OP OP			
	BP	0000	0100F: 01010:	90 144 90 144	É	N	OP OP			
	SI	0002	01011: 01012:		É	N	OP OP			
	DI	0000	01013: 01014: 01015:	90 144	é é	H)	0P LT 		-	
	ES	0100	screen	source	-	aux va	1	stack	flags	

USING BASE INDEX RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER

THEORY: The general syntax for register relative addressing mode is

$$EA = \begin{bmatrix} (BX) \\ (BP) \end{bmatrix} + \begin{bmatrix} (DI) \\ (SI) \end{bmatrix} + \begin{bmatrix} Displacement \end{bmatrix}$$

The offset is provided in the base register and index register + displacement

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- For transferring the offset of 10h break them into sum of two parts i.e 10h = 4h+4h+2h
- 4. For transferring offset part of 4H to SI write command MOV SI,4H
- 5. For transferring the 2nd part of offset to BX write the command as mov BX,4h
- 6. Now for transferring contents to AX write command as Mov AX, 5h.
- For transferring contents of AX register to memory location at offset of 3h write command as Mov [bx + SI+2h], AX
- 8. After completing the code click on **EMULATE** button and run the program in single steps.
- 9. Observe the output of following registers and fill the worksheet as given.

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

File edit bookmarks assembler emulator math ascil codes help Imew open examples save compile emulate calculator convertor options help about Imew open examples save compile emulate calculator convertor options help about Imew open examples save compile emulator calculator convertor options help about Imew open examples save compile emulator calculator convertor options help about Image: emulator: noname.bin image: im		nd microprocessor emulator 4.		
new open examples save compile emulate calculator convertor options heip about 11 ; IMPLIMENTING BASE INDEX RELATIVE ADDRESSING MODE				· (C)
MOU SI,4H MOU BX,4H MOU [SI+BX +2H],AX mulator: noname.bin file math debug view external virtual devices virtual drive help icad reload step back single step registers 01002:00:0009 01002:00:0009 01003:10:000 01002:00:0009 01002:00:0009 01002:00:000 NULL 00000 01004:04:04:04:04 01002:00:000 NULL 00000 01004:04:04:04:04:04 01002:00:000 NULL 00000 01004:04:04:04:04:04:04 01003:00:000 NULL 01003:00:000 01004:04:04:04:04:04:04:04:04:04:04:04:04:	new open examples	save compile emulate	calculator convertor options hel	
HOU BX, 4H 96 HOU [S1+BX +2H], AX emulator: noname.bin	02	AG BASE INDEX RELATIVE	E ADDRESSING MODE	·
96 MOU [SI+BX +2H], AX emulator: noname.bin				
file math debug view external virtual devices virtual drive help image: construction of the step back single step image: constep back single step		2H], <mark>AX</mark>		
file math debug view external virtual devices virtual drive help image: construction of the step back single step run step delay ms: 0 image: construction of the step back single step run step delay ms: 0 registers 01001: BE 190 J mou Step delay ms: 0 AX 00 00 01001: BE 190 J mou AX 00 00 01001: BE 190 J mou BX 00 00 01001: BE 197 J mou BX 00 00 01002: 00 0000 NULL DX 00 00 01002: 00 00 DX 00 00 01002: 00 00 SS 0100 00 0144 é NOP NOP 01001: 90 144 é NOP NOP NOP 01001: 90 144 é NOP NOP NOP 010101: 90				
Image: Step back single step run step delay ms: 0 Image: Step back single step run step delay ms: 0 Image: Step back single step run step delay ms: 0 Image: Step back 98 98 91 98 08 99 91 98 08 99 Image: Step back 91 98 08 99 91 98 08 99 91 98 08 99 Image: Step back 91 98 08 99 91 98 08 99 91 98 08 99 Image: Step back 91 98 08 99 91 98 08 99 91 98 08 99 Image: Step back 91 98 08 99 91 98 08 99 91 98 08 90 Image: Step back 91 98 08 99 91 98 08 91 91 98 08 91 Image: Step back 91 98 18 18 18 18 7 1 NOP Image: Step back 91 98 08 91 137 22 90 90 MULL NOP Image: Step back 91 908 12 90 144 6 NOP NOP Image: Step back 91 908 91 90 144 6 NOP NOP Image: Step back 90 144 4 6 NOP NOP Image: Step back 90 144 6 NOP NOP Image: Step back 90 144 6 NOP NOP Ima	emulator: nona	me.bin_		
Load reload step back single step run step delay ms: 0 registers 8198:80899 0188:80899 0188:80899 0188:80899 AX 00 00 12001: 04 004 + MOU SI, 00004h BX 80 04 01901: 04 004 + MOU SI, 00004h MOU BX, 00004h CX 06 06 01901: 04 004 + MOU BX, 00004h MOU BX, 00004h DX 06 06 01901: 04 004 + MOU BX, 00004h MOU BX, 00004h DX 08 08 01001: 04 004 + MOU NOP NOP DX 08 08 01002: 000 NULL NOP NOP SS 0180 01002: 02 012 02 NOP NOP SS 01808 01001: 90 144 £ NOP NOP NOP SI 08084 01010: 90 144 £ NOP NOP NOP SI 08084 0	file math debug vi	ew external virtual devices virtual		
registers 0100:000 BE 190 J MOU SI, 00004h AX 00 04 01000: BE 190 J MOU SI, 00004h BX 00 04 01001: 04 004 + MOU BX, 00004h BX 00 04 01002: 00 000 NULL MOU BX, 00004h CX 00 00 0104: 04 004 + MOU BX, 00004h DX 00 0104: 04 004 + MOU BX, 00004h DX 00 01002: 00 000 NULL NOP DX 00 01007: 40 064 0 NOP NOP 01008: 00 000 NULL NOP NOP 01008: 00 000 NULL NOP NOP 01008: 00 000 NULL NOP SS 0100 90 144 6 NOP NOP 01001: 90 144 6 NOP NOP SI 0004 01012: 90 144 6 NOP NOP 01012: 90 144 6 NOP NOP NOP 01013: 90 144 6 NOP		• I • I ···		
H L 01001:0000 01001:000 01001:000 BX 00 04 01001:04 04 MOU SI, 00004h BX 00 04 01001:04 04 MOU SI, 00004h BX 00 00 NULL MOU SI, 00004h MOU BX, 00004h CX 00 00 01001:04:04 044 MOU LBX + SII + 02h, AX DX 00 00 01002:00 000 NULL MOU LBX + SII + 02h, AX DX 00 00 01001:04:04 044 + MOP MOP DX 00 00 01002:00 000 NULL NOP NOP O1007:40 0644 0 01007:40 0644 NOP NOP NOP 01008:02 000 NULL NOP NOP NOP SS 0100 90 144 É NOP NOP NOP SI 0004 01012:90 144 É NOP NOP NOP <t< td=""><td></td><td>loadstep_backsingle_st</td><td>ep <u>run</u> step delay ms:</td><td>U</td></t<>		loadstep_backsingle_st	ep <u>run</u> step delay ms:	U
BX 09 04 004 + BX 09 04 01001: 04 004 + CX 09 08 01003: BB 187 1 CX 09 08 01004: 04 04 000 NULL DX 09 09 01005: 00 000 NULL NOP DX 09 09 01007: 40 044 04 NOP DX 09 09 01007: 40 044 04 NOP SS 01008: 02 002 0 NOP NOP NOP SS 01008: 00 000 NULL NOP NOP NOP SS 01001: 90 144 6 NOP NOP NOP SF FFFE 01001: 90 144 6 NOP NOP SI 0909 01011: 90 144 6 NOP NOP SI 0909 01013: 90 144 6		0100:0009	0100:0009	
BX 06 04 01002: 00 000 NULL CX 06 06 01002: 00 000 NULL 01003: BB 187 7 01004: 04 004 4 01007: 40 064 4 01007: 40 064 6 01007: 40 064 6 01007: 40 064 6 01008: 02 02 6 01008: 02 02 6 01008: 02 01008 6 01008: 02 01008 6 01008: 02 01008 6 01008: 02 01008 6 01008: 02 01008 6 01008: 02 0144 6 NOP NOP NOP NOP 01008: 90 144 01008: 90 144 6 NOP NOP NOP NOP 01011: 90 144 NOP 01012: 90 144 NOP 01013: 90 144 NOP NOP NOP <	AX 00 00		MOU SI, 00004h	_
CX 00 00 01004: 04 ↓ DX 00 00 NULL 01005: 00 000 NULL 01006: 89 137 ↓ 01006: 89 137 ↓ CS 0100 90 144 ↓ 01007: 40 044 ↓ 01007: 40 064 ₽ 01007: 40 044 ↓ 01007: 40 064 ₽ 01007: 40 044 ↓ 01007: 40 064 ₽ 01007: 40 044 ↓ 01007: 90 144 € ₩ NOP NOP NOP 01001: 90 144 € ₩ NOP NOP 01001: 90 144 € ₩ NOP NOP 01011: 90 144 € ₩ NOP NOP 01012: 90 144 € ₩ NOP DI 90809 01013: 90 144	BX 00 04	01002: 00 000 NULL	MOV [BX + SI] + 02h,	AX
DX 00 00 01006: 89 137 ë NOP CS 0100 01007: 40 064 C NOP 01008: 02 002 C 01008: 02 002 C NOP 01008: 02 000 NULL 01008: 02 000 NULL NOP SS 0100 01000: 90 144 É NOP SP FFFE 01000: 90 144 É NOP 01000: 90 144 É NOP NOP SP 01000: 90 144 É NOP SI 0000 0101: 90 144 É NOP DI 0000 0101: 90 144 É NOP 0101: 90 144 É NOP NOP 0101: 90 144	CX 00 00	01004: 04 004 👻	ADD [BX + SI], AL	
CS 0100 01008: 02 002 C NOP IP 0009 01008: 00 000 NULL NOP SS 0100 01008: 00 000 NULL NOP SS 0100 0100C: 90 144 É NOP SP FFFE 0100E: 90 144 É NOP BP 0000 0100F: 90 144 É NOP SI 0004 01011: 90 144 É NOP DI 0000 01012: 90 144 É NOP DI 0000 01013: 90 144 É NOP DI 0100 01014: 90 144 É NOP DI 0100 01014: 90 144 É NOP DI 0100 01014: 90 144 É NOP 01015: 90 144 É NOP NOP NOP 01015: 90 144 É NOP	DX 00 00	01006: 89 137 ë	NOP	
IP 0009 0100A: 00 000 NULL NOP SS 0100 0100B: 00 000 NULL NOP SP FFFE 0100D: 90 144 € NOP BP 0000 000E: 90 144 € NOP SI 0000 0100F: 90 144 € NOP SI 0000 01010: 90 144 € NOP DI 0000 01011: 90 144 € NOP DI 0000 01011: 90 144 € NOP DI 0000 01011: 90 144 € NOP DI 0000 010112: 90 144 € NOP DI 0000 01012: 90 144 € NOP DS 0100 01014: 90 144 ✓ ✓ FS 0100 01015: 90 144 ✓ ✓ <td>CS 0100</td> <td>01008: 02 002</td> <td>NOP</td> <td></td>	CS 0100	01008: 02 002	NOP	
S5 0100 0100C: 90 144 é NOP SP FFFE 0100D: 90 144 é NOP BP 0000 0100F: 90 144 é NOP SI 0004 01011: 90 144 é NOP DI 0000 01011: 90 144 é NOP DI 0000 01011: 90 144 é NOP DI 0000 01013: 90 144 é NOP DS 0100 0144 é NOP FS 0100 0144 é NOP	IP 0009	0100A: 00 000 NULL	NOP	
SF FFFE 0100E: 90 144 É NOP BP 0000 0100F: 90 144 É NOP SI 0004 01011: 90 144 É NOP DI 0000 01011: 90 144 É NOP DI 0000 01012: 90 144 É NOP DI 0000 01013: 90 144 É NOP DS 0100 01014: 90 144 É NOP FS 0100 01015: 90 144 É	0100	0100C: 90 144 É	NOP	
Si 0004 01010: 90 144 € NOP Si 0004 01011: 90 144 € NOP Di 0000 01012: 90 144 € NOP Di 0000 01013: 90 144 € NOP DS 0100 01014: 90 144 € NOP FS 0100 01015: 90 144 €		0100E: 90 144 É	NOP	
01 0300 01012: 90 144 € NOP DI 0000 01013: 90 144 € NOP DS 0100 01014: 90 144 € NOP DS 0100 01015: 90 144 € NOP FS 0100 01015: 90 144 € ✓		01010: 90 144 É	NOP	
DS 0100 01014: 90 144 É NOP 01015: 90 144 É ▼ ▼		01012: 90 144 É	NOP	
ES 0100		01014: 90 144 É		
ES 0100		01015: 90 144 É		<u> </u>
screen source reset aux vars debug stack flags	ES DIDD	screen source reset au	ux vars debug stack fla	ags

DEMONSTATING MOV INSTRUCTION SET

The general syntax for MOV instruction set is

MOV DESTINATION, SOURCE

The source can be any register memory location or hexadecimal number. The destination can be any register or memory location

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write move instruction to verify the data transfer to different registers of 8086 microprocessor.
- 4. Mov AX,2H
- 5. MOV BX,3H
- 6. MOV CX,4H
- 7. MOV DX,10H
- 8. MOV CS,44H
- 9. MOV IP, 55H
- 10. MOV SS,41H
- 11. MOV SP, 42H
- 12. MOV BP,31H
- 13. MOV SI,32H
- 14. MOV DI,33H
- 15. MOV DS, 49H
- 16. MOV ES, 47H
- 17. MOV AH, 456H
- 18. MO DL, 44H

PRECAUSIONS:

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

READINGS

NOTE: Tick mark the command that executed and those that not executed write faults

S.NO	COMMAND	COMMAND	COMMAND NOT	FAULT
		EXECUTED	EXECUTED	
1.	1. Mov AX,2H			
	2. MOV BX,3H			
	3. MOV CX,4H			
	4. MOV			
	DX,10H			
	5. MOV			
	CS,44H			
	6. MOV IP,			
	55H			
	7. MOV			
	SS,41H			
	8. MOV SP,			
	42H			
	9. MOV			
	BP,31H			
	10. MOV SI,32H			
	11. MOV DI,33H			
	12. MOV DS,			
	49H			
	13. MOV ES,			
	47H			
	14. MOV AH,			
	456H			
	15. MO DL, 44H			

DEMONSTATING XCHANGE INSTRUCTION SET

The general syntax for XCHG instruction set is

XCHG REGISTER, REGISTER

Xchg instruction exchanges the contents between two memory locations or registers.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to two registers
- 4. Write command Mov Ax, 44h
- 5. Write the command Mov Bx,33h
- 6. Write the command Xchg Ax,Bx
- 7. Fill out the readings given for results

- 8. Never use infinite loop in any coding.
- 9. Always emulate the code in single instruction.
- 10. Care fully observes the output of registers.

READINGS

S.NO	COMMANDS	RESULTS	
1	MOV AX, 44H	AX =	BX=
2	MOV BX,33H	AX =	BX=
3.	XCHG AX,BX	AX =	BX=

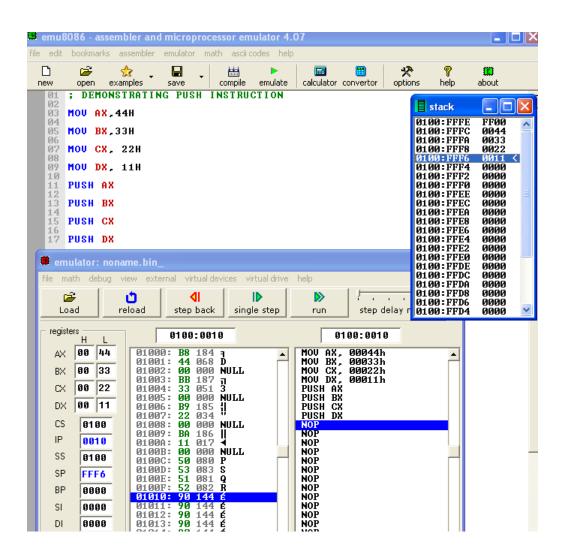
DEMONSTATING PUSH INSTRUCTION SET

The general syntax for PUSH instruction set is

PUSH REGISTER

PUSH Instruction is used to send contents of register or memory to stack segment. In stack segment stack segment register (ss) and stack pointer register (sp) work together. Push instruction executes in following steps

- 1. Stack pointer register (sp) is decremented by 2H
- 2. Data is copied from register to stack memory location.


PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command Mov Ax, 44h
- 5. Write the command Mov Bx,33h
- 6. Write command Mov Cx, 22h
- 7. Write command mov Dx,11h
- 8. For transferring contents of these registers to stack write the commands as
- 9. Push Ax
- 10. Push Bx
- 11. Push cx
- 12. Push dx
- 13. Fill out the readings given for results

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

READINGS

S.NO	COMMANDS	RESULTS					
		AX	BX	CX	DX	SS	SP
1	MOV AX, 44H						
2	MOV BX,33H						
3	MOV CX,22H						
4	MOV DX,11H						
5	PUSH AX						
6	PUSH BX						
7	PUSH CX						
8	PUSH DX						

DEMONSTATING POP INSTRUCTION SET

The general syntax for POP instruction set is

POP REGISTER

POP Instruction is used to copy contents from stack memory to register. In stack segment stack segment register (ss) and stack pointer register (sp) work together. POP instruction executes in following steps

- 1. Data is copied from stack memory to register
- 2. Stack Pointer is incremented by 2H

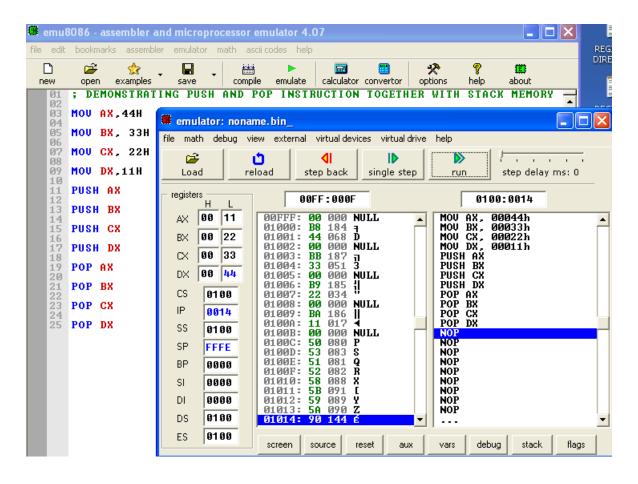
PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command Mov Ax, 44h
- 5. Write the command Mov Bx,33h
- 6. Write command Mov Cx, 22h
- 7. Write command mov Dx,11h
- 8. For transferring contents of these registers to stack write the commands as
- 9. Push Ax
- 10. Push Bx
- 11. Push cx
- 12. Push dx

For copying data from stack to register write command as

- 13. Pop Ax
- 14. Pop Bx
- 15. Pop Cx
- 16. Pop Dx

17. Fill out the readings given for results


PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction

READINGS

S.NO	COMMANDS	RESULTS					
		AX	BX	CX	DX	SS	SP
1	MOV AX, 44H						
2	MOV BX,33H						
3	MOV CX,22H						
4	MOV DX,11H						
5	PUSH AX						
6	PUSH BX						
7	PUSH CX						
8	PUSH DX						
9	Рор АХ						
10	Рор ВХ						
11	POP CX						
12	POP DX						

DEMONSTATING PUSHF INSTRUCTION SET

The general syntax for PUSHF instruction set is

PUSHF

PUSHF Instruction is used to send the status of flag registers to stack memory. This command has no operands.

- 1. Stack pointer register (sp) is decremented by 2H
- 2. Data is copied from register to stack memory location.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write the command as PUSHF.

PRECAUSIONS:

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.
- 3. Care fully observes the output of registers.

READINGS

S.NO	COMMANDS	RESULTS							
		AX	BX	СХ	DX	SS	SP		
1	MOV AX,5H								
2	MOV BX,10H								
3.	Pushf								

DEMONSTATING POPF INSTRUCTION SET

The general syntax for POP instruction set is

POPF

POP Instruction is used to send status of flag registers from stack memory to flag register. This command has no operands

- 1. Data is copied from stack memory to register
- 2. Stack Pointer is incremented by 2H

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 3. Type the instruction on the coding area of simulator.
- 4. Write the instruction to move contents to registers
- 5. POPF
- 6. Fill out the readings given for results

PRECAUSIONS:

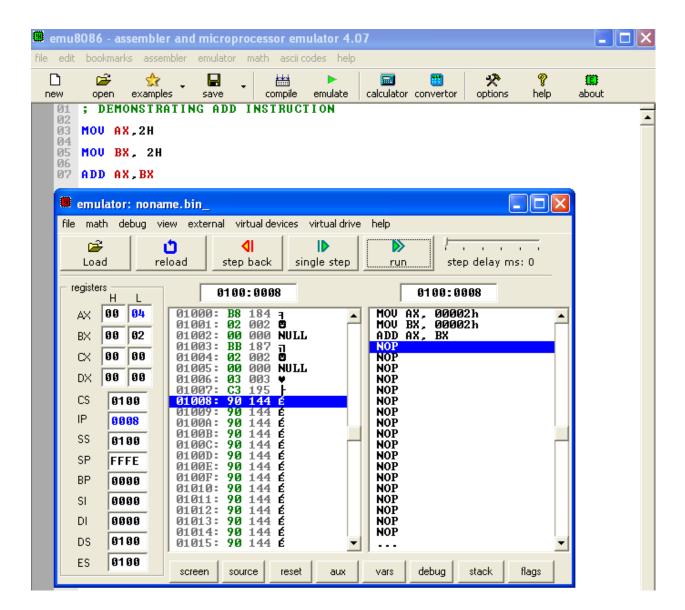
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	СХ	DX	SS	SP
1	MOV AX,5H						
2	MOV BX,10H						
3.	Pushf						

DEMONSTATING ADD INSTRUCTION SET

The general syntax for ADD instruction set is

ADD REGISTER, REGISTER


ADD instruction is used to add the contents of two registers and result is stored into Ax register.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,2H
- 5. Write command MOV BX,2H
- 6. Write command ADD AX,BX
- 7. Observe output and fill out the readings given for results

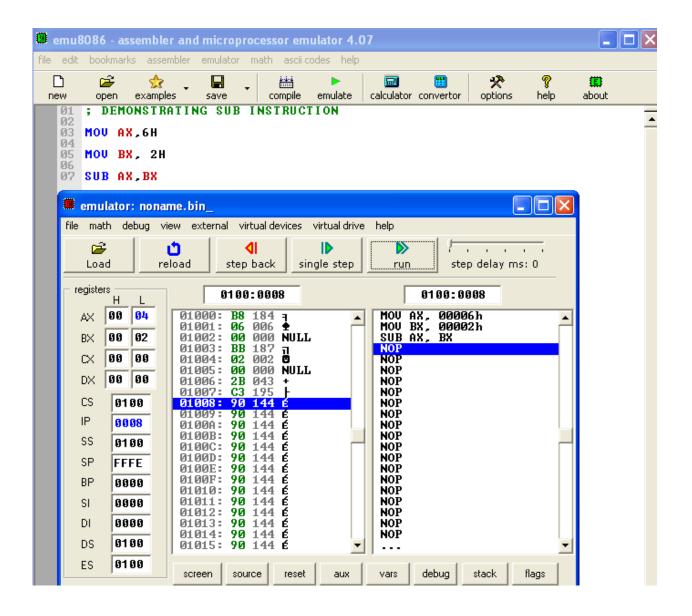
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	СХ	DX	CS	IP
1	MOV AX,2H						
2	MOV BX,2H						
3.	ADD AX,BX						

DEMONSTATING SUB INSTRUCTION SET

The general syntax for SUB instruction set is

SUB DESTINATION REGISTER, SOURCE REGISTER


SUB instruction is used to subtract the contents of two registers and result is stored into Ax register.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,6H
- 5. Write command MOV BX,2H
- 6. Write command SUB BX,AX
- 7. Observe output and fill out the readings given for results

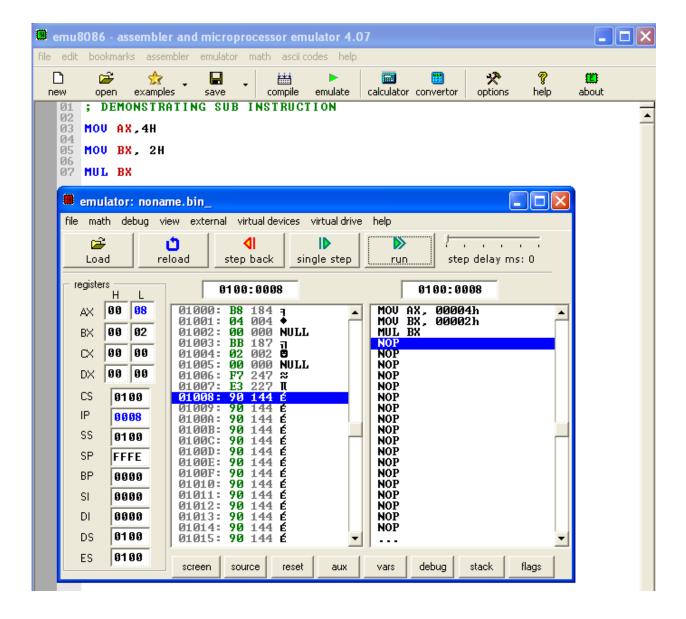
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	CX	DX	CS	IP
1	MOV AX,6H						
2	MOV BX,2H						
3.	SUB BX,AX						

DEMONSTATING MUL INSTRUCTION SET

The general syntax for MUL instruction set is

MUL REGISTER


MUL instruction is used to multiply contents of two registers. It uses only one register in the operand. For example if we want to multiply two values suppose 4H X 2H, 1st of all move any one value to AX register and 2nd value to any BX, CX or DX and apply command as MUL CX. The contents of AX register will be automatically multiplied by the contents of BX and result will be stored in AX.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,4H
- 5. Write command MOV BX,2H
- 6. Write command MUL BX
- 7. Observe output and fill out the readings given for results

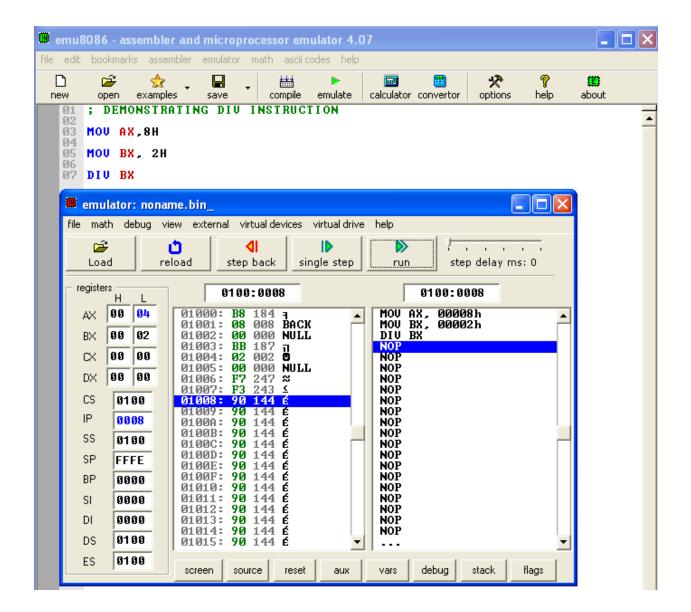
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	СХ	DX	CS	IP
1	MOV AX,4H						
2	MOV BX,2H						
3.	MUL BX						

DEMONSTATING DIV INSTRUCTION SET

The general syntax for DIV instruction set is

DIV REGISTER


DIV instruction is used to divide contents of two registers. It uses only one register in the operand. For example if we want to divide two values suppose 5/2, 1st of all move that number which will be divided (dividend) into AX register and that which will divide(divisor) into BX or CX. The quotient will be stored into AX and reminder will be stored into DX.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,8H
- 5. Write command MOV BX,2H
- 6. Write command DIV BX
- 7. Observe output and fill out the readings given for results

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	СХ	DX	CS	IP
1	MOV AX,8H						
2	MOV BX,2H						
3.	DIV BX						

DEMONSTATING INC INSTRUCTION SET

The general syntax for INC instruction set is

INC REGISTER

INC instruction increases the content of register or memory by 1H. Every single INC REGISTER increases the value of register by 1h.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,8H
- 5. Write command MOV BX,2H
- 6. Write command INC AX
- 7. Write command INC AX
- 8. Write command INC BX
- 9. Write command INC BX
- 10. Write command INC CX
- 11. Write command INC DX
- 12. Observe output and fill out the readings given for results

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	СХ	DX	CS	IP
1	MOV AX,8H						
2	MOV BX,2H						
3.	INC AX						
4.	INC AX						
5.	INC BX						
6.	INC BX						
7.	INC CX						
8.	INC DX						

DEMONSTATING DEC INSTRUCTION SET

The general syntax for DEC instruction set is

DEC REGISTER

INC instruction decreases the content of register or memory by 1H. Every single INC REGISTER decreases the value of register by 1h.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,8H
- 5. Write command MOV BX,2H
- 6. Write command DEC AX
- 7. Write command DEC AX
- 8. Write command DEC BX
- 9. Write command DEC BX
- 10. Write command DEC CX
- 11. Write command DEC DX
- 12. Observe output and fill out the readings given for results

PRECAUSIONS:

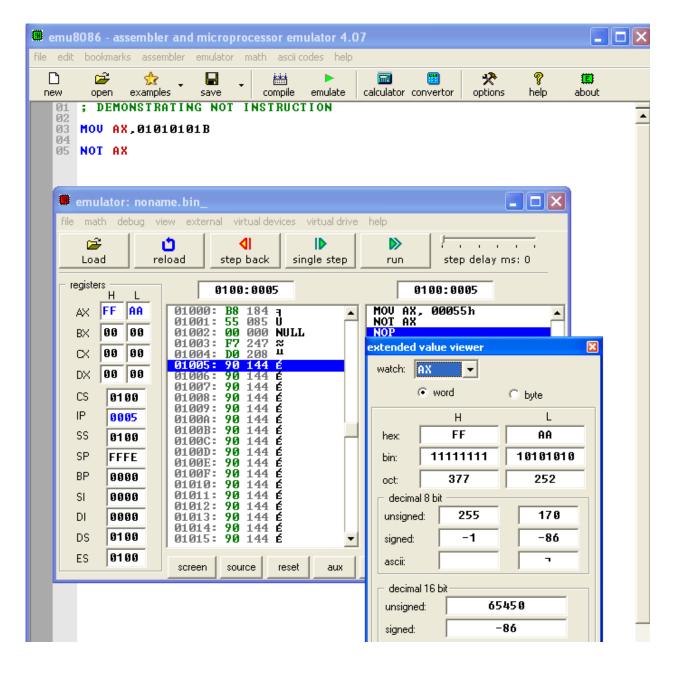
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction.

S.NO	COMMANDS	RESULTS					
		AX	BX	CX	DX	CS	IP
1	MOV AX,8H						
2	MOV BX,2H						
3.	DEC AX						
4.	DEC AX						
5.	DEC BX						
6.	DEC BX						
7.	DEC CX						
8.	DEC DX						

DEMONSTATING NOT INSTRUCTION SET

The general syntax for NOT instruction set is

NOT REGISTER


NOT instruction fall into category of bit-manipulation instruction set. This command is used to take complement of binary bits.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,01010101b
- 5. Write command NOT AX
- 6. Observe output and fill out the readings given for results

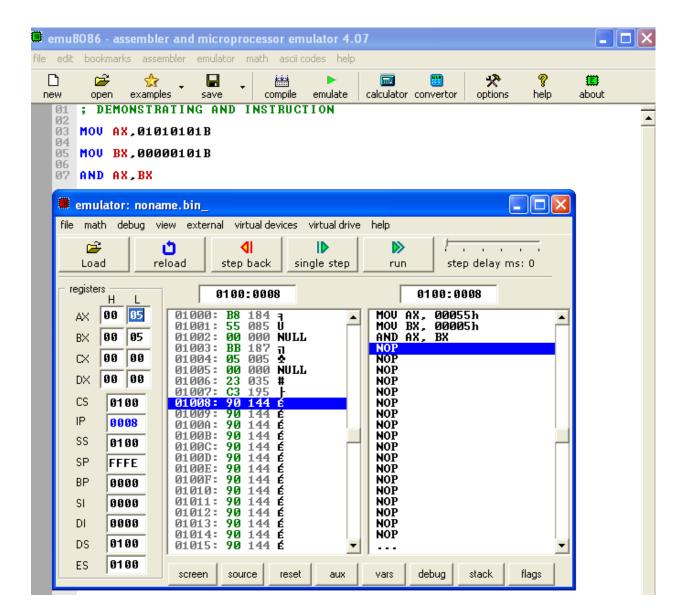
- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction

S.NO	COMMANDS	RESULTS		
		AX	CS	IP
1	MOV AX,01010101B	000000001010101		
2	NOT AX	1111111110101010		

DEMONSTATING AND INSTRUCTION SET

The general syntax for AND instruction set is

AND REGISTER, REGISTER


AND instruction is used to manipulate and logic in microprocessor.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,01010101b
- 5. Write command MOV BX,00001010b
- 6. Write command AND AX,BX
- 7. Observe output and fill out the readings given for results

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction

S.NO	COMMANDS	RESULTS		
		AX	CS	IP
1	MOV AX,01010101B	000000001010101		
2	MOV BX,00000101B	0000000000000101		
3	AND AX,BX	000000000000101		

DEMONSTATING OR INSTRUCTION SET

The general syntax for OR instruction set is

OR REGISTER, REGISTER

OR instruction is used to manipulate OR logic in microprocessor.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,01010101b
- 5. Write command MOV BX,00001010b
- 6. Write command OR AX, BX
- 7. Observe output and fill out the readings given for results

PRECAUSIONS:

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction

S.NO	COMMANDS	RESULTS		
		AX	CS	IP
1	MOV AX,01010101B	000000001010101		
2	MOV BX,00000101B	0000000000000101		
3	OR AX,BX	000000001010101		

DEMONSTATING XOR INSTRUCTION SET

The general syntax for XOR instruction set is

XOR REGISTER, REGISTER

XOR instruction is used to manipulate XOR logic in microprocessor.

PROCEDURE:

- 1. Open emu-8086 simulator and select empty work space from option.
- 2. Type the instruction on the coding area of simulator.
- 3. Write the instruction to move contents to registers
- 4. Write command MOV AX,01010101b
- 5. Write command MOV BX,00001010b
- 6. Write command XOR AX, BX
- 7. Observe output and fill out the readings given for results

PRECAUSIONS:

- 1. Never use infinite loop in any coding.
- 2. Always emulate the code in single instruction

S.NO	COMMANDS	RESULTS		
		AX	CS	IP
1	MOV AX,01010101B	000000001010101		
2	MOV BX,00000101B	000000000000101		
3	XOR AX,BX	000000001010000		