
1

ENGR.ABDUL HAFEEZ

Contents
PRACTICAL NO.1 .. 4

UNDERSTANDING THE REGISTERS OF 8086 MICROPROCESSOR .. 4

PRACTICAL NO.2 .. 6

STUDY THE “MOV” INSTRUCTION ... 6

PRACTICAL NO.3 .. 7

UNDERSTANDING THE ADRESSING MODES OF 8086 MICRO PROCESSOR ... 7

PRACTICAL NO.4 .. 8

IMPLEMENTING THE IMMIDIATE ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086

EMULATOR .. 8

PRACTICAL NO.5 .. 10

IMPLEMENTING THE REGISTER ADRESSING MODES OF 8086 MICRO PROCESSOR USING EMU-8086

EMULATOR .. 10

PRACTICAL NO.6 .. 12

UNDERSTANDING THE MEMORY ADRESSING MODE ... 12

PRACTICAL NO.7 .. 14

UNDERSTANDING MEMORY DIRECT ADDRESSING MODE ... 14

PRACTICAL NO.8 .. 15

USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H, 10H, 15H, 20H, 25H) TO

MEMORY ... 15

PRACTICAL NO.9 .. 18

USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H,10H,15H,20H,25H) FROM

MEMORY TO REGISTER ... 18

PRACTICAL NO.10 .. 20

USING REGISTER INDIRECT ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO

REGISTER ... 20

PRACTICAL NO.11 .. 22

USING REGISTER RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO

REGISTER ... 22

PRACTICAL NO.12 .. 24

USING BASE INDEX ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO REGISTER 24

PRACTICAL NO.13 .. 26

2

ENGR.ABDUL HAFEEZ

USING BASE INDEX RELATIVE ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H) MEMORY TO

REGISTER ... 26

PRACTICAL NO.14 .. 28

DEMONSTATING MOV INSTRUCTION SET .. 28

PRACTICAL NO.15 .. 30

DEMONSTATING XCHANGE INSTRUCTION SET... 30

PRACTICAL NO.16 .. 32

DEMONSTATING PUSH INSTRUCTION SET .. 32

PRACTICAL NO.17 .. 34

DEMONSTATING POP INSTRUCTION SET .. 34

PRACTICAL NO.18 .. 36

DEMONSTATING PUSHF INSTRUCTION SET .. 36

PRACTICAL NO.19 .. 37

DEMONSTATING POPF INSTRUCTION SET .. 37

PRACTICAL NO.20 .. 38

DEMONSTATING ADD INSTRUCTION SET ... 38

PRACTICAL NO.21 .. 40

DEMONSTATING SUB INSTRUCTION SET .. 40

PRACTICAL NO.22 .. 42

DEMONSTATING MUL INSTRUCTION SET ... 42

PRACTICAL NO.23 .. 44

DEMONSTATING DIV INSTRUCTION SET ... 44

PRACTICAL NO.24 .. 46

DEMONSTATING INC INSTRUCTION SET ... 46

PRACTICAL NO.25 .. 48

DEMONSTATING DEC INSTRUCTION SET .. 48

PRACTICAL NO.26 .. 50

DEMONSTATING NOT INSTRUCTION SET ... 50

PRACTICAL NO.27 .. 52

DEMONSTATING AND INSTRUCTION SET ... 52

PRACTICAL NO.28 .. 54

DEMONSTATING OR INSTRUCTION SET .. 54

3

ENGR.ABDUL HAFEEZ

PRACTICAL NO.29 .. 55

DEMONSTATING XOR INSTRUCTION SET .. 55

4

ENGR.ABDUL HAFEEZ

PRACTICAL NO.1

 UNDERSTANDING THE REGISTERS OF 8086 MICROPROCESSOR

THE 8086 microprocessor has total of 14 registers which can be classified as:

REGISTER NAME DESCRIPTION SIZE

AX GENERAL PURPOSE REGISTER USED TO STORE 16 BIT S

BX DATA . 16 BITS

CX 16 BITS

DX 16 BITS

CS (CODE SEGMENT) STORES BASE ADRESS OF CODE SEGMENT 16 BITS

IP (INSTRUCTION POINTER) STORES OFFSET ADRESS OF CODE SEGMENT 16 BITS

SS (STACK SEGMENT) STORES BASE ADRESS OF STACK SEGMENT 16 BITS

SP (STACK POINTER) STORES OFFSET ADRESS OF STACK POINTER 16 BITS

BP (BASE POINTER) 16 BITS

SI (SOURCE INDEX) 16 BITS

DI (DESTINATION INDEX) 16 BITS

DS (DATA SEGMENT) 16 BITS

ES (EXTRA SEGMENT) 16 BITS

FLAG (FLAG REGISTER) 8 BITS

General purpose register can also be divided into two sets of 8 bits as higher bits H and lower bits L i.e

least significant bits and most significant bits.

REGISTER HIGHER BITS H LOWER BITS L

AX AH AL

BX BH BL

CX CH CL

DX DH DL

G
EN

ER
A

L

R
EG

IS
TE

R
S

5

ENGR.ABDUL HAFEEZ

6

ENGR.ABDUL HAFEEZ

PRACTICAL NO.2

 STUDY THE “MOV” INSTRUCTION

MOV instruction is a very common and basic command used in micro

processor to copy contents from source to destination. The general syntax of

MOV instruction is:

MOV <SPACE> DESTINATION, SOURCE

DESTINATION can be the name of any register or memory location

Source can be any register name or memory location or any value in decimal, hexadecimal or binary

7

ENGR.ABDUL HAFEEZ

PRACTICAL NO.3

 UNDERSTANDING THE ADRESSING MODES OF 8086 MICRO PROCESSOR

The addressing mode in literature came from two words address which

means to talk to share some information and mode which means method. So

from addressing mode it means that by which method we communicate with

4micro processor to give instructions.

Addressing modes fall into three major categories’

1. Immediate addressing mode

2. Register addressing mode

3. Memory addressing mode.

In immediate addressing mode data is stored in register of 8086

microprocessor form input given by user and contents of register will be

taken from instructions. The general syntax for immediate addressing mode

is

MOV <SPACE> REGISTER, VALUE

Using immediate addressing mode, contents in any number system can be

transferred to registers. Only need is to specify the number system suffix

after the number to be entered, for example

MOV AX, 20

MOV BX, 10H

MOV CX, 01010101B

Considers 20 as decimal and stores equallent

hexadecimal in to AX

Stores 10 hexadecimal to BX

Considers it a binary number and stores

hexadecimal

8

ENGR.ABDUL HAFEEZ

PRACTICAL NO.4

 IMPLEMENTING THE IMMIDIATE ADRESSING MODES OF 8086 MICRO

PROCESSOR USING EMU-8086 EMULATOR

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring content of 10H to register ax write the command as MOV AX, 10H and

write the comments as appropriate.

4. For transferring a binary number as 01010101using immediate addressing mode, write

the command MOV BX, 01010101B and write comments as appropriate.

5. For transferring a decimal number of 20 write command as MOV CX, 20 and comments

as appropriate.

6. After completing the code click on EMULATE button and run the program in single

steps.

7. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

9

ENGR.ABDUL HAFEEZ

WORK SHEET:

S.NO REGISTERS INITIAL
VALUES

1ST STEP 2ND STEP 3RD STEP 4TH STEP

1 AX

2 BX

3 CX

4 CS

5 IP

10

ENGR.ABDUL HAFEEZ

PRACTICAL NO.5

IMPLEMENTING THE REGISTER ADRESSING MODES OF 8086 MICRO

PROCESSOR USING EMU-8086 EMULATOR

In the register addressing mode using MOV instruction contents of one register is copied to the

other register.

In the above example BX register is destination register and AX is source register. Recall from previous

example that in MOV instruction uses Destination and Source as

MOV BX,AX

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring content of 5H to register AX write the command as MOV AX, 5H and

write the comments as appropriate.

4. For transferring the contents of AX to BX write command MOV BX,AX

5. After completing the code click on EMULATE button and run the program in single

steps.

6. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

7. Never use infinite loop in any coding.

8. Always emulate the code in single instruction.

9. Care fully observes the output of registers.

A
X

 =
 5

H

B
X

 =
 0

H

MOV BX,AX

B
X

 =
 5

H

A
X

 =
 5

H

11

ENGR.ABDUL HAFEEZ

WORK SHEET:

S.NO REGISTERS INITIAL
VALUES

1ST STEP 2ND STEP 3RD STEP 4TH STEP

1 AX

2 BX

3 CS

4 IP

12

ENGR.ABDUL HAFEEZ

PRACTICAL NO.6

UNDERSTANDING THE MEMORY ADRESSING MODE

Memory addressing mode is used to transfer data from memory to register and from register to

memory by using MOV instruction. The total memory of 8086 microprocessor is divided into

four parts or segments that is

CONCEPT OF ADRESSES:

Address specifies the memory location. Each memory location is specified by a unique address.

Accessing a specific memory location involves base addresses and offset addresses.

 Base address is the address from which a specific segment starts and accessing any

memory location within that segment involves offset address. Each memory location is

accessed by that reference address called base address and by increasing offset value different

memory fields are accessed.

8
0

8
6

 M
EM

O
R

Y
 (

1
M

B
)

CODE SEGMENT (64KB)

STACK SEGMENT (64KB)

DATA SEGMENT (64 KB)

EXTRA SEGMENT (64KB)

ADRESS

DATA
ADRESS

ASSOCIATED

WITH DATA

FIELD

01000

5H

01004

25H

01005

30H

01003

20H

01002

15H

01001

10H

13

ENGR.ABDUL HAFEEZ

Increment in base address to access a specific memory location is called offset

address.

Memory addressing modes can be classified into five categories as:

1. Direct addressing mode

2. Register indirect addressing mode

3. Register relative addressing mode

4. Base index addressing mode

5. Base index relative addressing mode

 Each memory addressing mode utilized the fact that the difference is that

method of giving offset address is different for every addressing mode.

1H

2H

3H

4H

5H O
FF

SE
T

14

ENGR.ABDUL HAFEEZ

PRACTICAL NO.7

UNDERSTANDING MEMORY DIRECT ADDRESSING MODE

In memory direct addressing mode offset is provided directly in the instrution and contents of

data segment memory is used.

Transfering data from register to memory:

Suppose data segment base address is 0100 as data. Physical address is calculated as

P.A = DS*10H

Memory location can be accesed by adding offset into physical address. MOV instruction for

this case can be modified as:

MOV DESTINATION, SOURCE

MOV <SPACE> [OFFSET], REGISTER

By default memory of data segment DS is accessed.

DS shows base address of data segment and offset is given in the instruction field directly

15

ENGR.ABDUL HAFEEZ

PRACTICAL NO.8

USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA (5H, 10H,

15H, 20H, 25H) TO MEMORY

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring content of 5H to register AX write the command as MOV AX, 5H and

write the comments as appropriate.

4. For transferring the contents of AX to memory in data segment with offset of 1H

write command MOV [1H],AX

5. For transferring content of 10H to register AX write the command as MOV AX, 10H

and write the comments as appropriate.

6. For transferring the contents of AX to memory in data segment with offset of 2H

write command MOV [2H],AX

7. For transferring content of 15H to register AX write the command as MOV AX, 15H

and write the comments as appropriate.

8. For transferring the contents of AX to memory in data segment with offset of 3H

write command MOV [3H],AX

9. Repeat the code up to 25H data field with offset of 5H

10. After completing the code click on EMULATE button and run the program in single

steps.

11. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

16

ENGR.ABDUL HAFEEZ

17

ENGR.ABDUL HAFEEZ

WORKSHEET:

01000

A
X

INSTRUCTION QUIE

REGISTER

18

ENGR.ABDUL HAFEEZ

PRACTICAL NO.9

USING MEMORY DIRECT ADDRESSING MODE TO TRANSFER DATA

(5H,10H,15H,20H,25H) FROM MEMORY TO REGISTER

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring the contents of AX from memory in data segment with offset of 1H

to AX write command MOV AX,[1H]

4. For transferring the contents of AX to memory in data segment with offset of 2H

write command MOV AX,[2H]

5. For transferring the contents of AX to memory in data segment with offset of 3H

write command MOV AX,3[H]

6. Repeat the code up to offset of 5H

7. After completing the code click on EMULATE button and run the program in single

steps.

8. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

19

ENGR.ABDUL HAFEEZ

20

ENGR.ABDUL HAFEEZ

PRACTICAL NO.10

USING REGISTER INDIRECT ADDRESSING MODE TO TRANSFER

DATA(5H,10H,15H) MEMORY TO REGISTER

The general syntax for memory indirect addressing mode is

 Mov “register”, [SI OR DI OR BX]

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring offset of 1H to SI write command

MOV SI,1H

4. For transferring the contents of memory in data segment to AX with offset of 1H

write command MOV AX,[SI]

5. Repeat the code up to offset of 3H FOR DATA 10H &15H

6. After completing the code click on EMULATE button and run the program in single

steps.

7. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

8. Never use infinite loop in any coding.

9. Always emulate the code in single instruction.

10. Care fully observes the output of registers.

21

ENGR.ABDUL HAFEEZ

22

ENGR.ABDUL HAFEEZ

PRACTICAL NO.11

USING REGISTER RELATIVE ADDRESSING MODE TO TRANSFER

DATA(5H,10H,15H) MEMORY TO REGISTER

The general syntax for register relative addressing mode is

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator

3. For transferring offset of 1H to SI write command

MOV SI,1H

4. For transferring the contents of memory in data segment to AX with offset of 1H

write command MOV AX,[SI + 0h]

5. For transferring the contents of memory in data segment with offset of 2H write

command MOV AX,[SI + 1h] so the total offset will be of 2h

6. For transferring the contents of memory in data segment with offset of 2H write

command MOV AX,[SI + 2h] so the total offset will be of 3h

7. After completing the code click on EMULATE button and run the program in single

steps.

8. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

23

ENGR.ABDUL HAFEEZ

24

ENGR.ABDUL HAFEEZ

PRACTICAL NO.12

USING BASE INDEX ADDRESSING MODE TO TRANSFER DATA(5H,10H,15H)

MEMORY TO REGISTER

The general syntax for BASE INDEX addressing mode is

The offset is provided in the base register and index register

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. For transferring the offset of 3h break them into sum of two parts i.e 3h = 2h+1h

4. For transferring offset part of 2H to SI write command

MOV SI,2H

5. For transferring the 2nd part of offset to BX write the command as mov BX,1h

6. Now for transferring contents to AX write command as Mov AX, 5h.

7. For transferring contents of AX register to memory location at offset of 3h write

command as Mov [bx + SI], AX

8. After completing the code click on EMULATE button and run the program in single

steps.

9. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

25

ENGR.ABDUL HAFEEZ

26

ENGR.ABDUL HAFEEZ

PRACTICAL NO.13

USING BASE INDEX RELATIVE ADDRESSING MODE TO TRANSFER

DATA(5H,10H,15H) MEMORY TO REGISTER

THEORY: The general syntax for register relative addressing mode is

The offset is provided in the base register and index register + displacement

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. For transferring the offset of 10h break them into sum of two parts i.e 10h =

4h+4h+2h

4. For transferring offset part of 4H to SI write command

MOV SI,4H

5. For transferring the 2nd part of offset to BX write the command as mov BX,4h

6. Now for transferring contents to AX write command as Mov AX, 5h.

7. For transferring contents of AX register to memory location at offset of 3h write

command as Mov [bx + SI+2h], AX

8. After completing the code click on EMULATE button and run the program in single

steps.

9. Observe the output of following registers and fill the worksheet as given.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

27

ENGR.ABDUL HAFEEZ

28

ENGR.ABDUL HAFEEZ

PRACTICAL NO.14

DEMONSTATING MOV INSTRUCTION SET

The general syntax for MOV instruction set is

 MOV DESTINATION,SOURCE

The source can be any register memory location or hexadecimal number. The destination can

be any register or memory location

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write move instruction to verify the data transfer to different registers of 8086

microprocessor.

4. Mov AX,2H

5. MOV BX,3H

6. MOV CX,4H

7. MOV DX,10H

8. MOV CS,44H

9. MOV IP, 55H

10. MOV SS,41H

11. MOV SP, 42H

12. MOV BP,31H

13. MOV SI,32H

14. MOV DI,33H

15. MOV DS, 49H

16. MOV ES, 47H

17. MOV AH, 456H

18. MO DL, 44H

29

ENGR.ABDUL HAFEEZ

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

READINGS

NOTE: Tick mark the command that executed and those that not executed write faults

S.NO COMMAND COMMAND
EXECUTED

COMMAND NOT
EXECUTED

FAULT

1. 1. Mov AX,2H
2. MOV BX,3H
3. MOV CX,4H
4. MOV

DX,10H
5. MOV

CS,44H
6. MOV IP,

55H
7. MOV

SS,41H
8. MOV SP,

42H
9. MOV

BP,31H
10. MOV SI,32H
11. MOV DI,33H
12. MOV DS,

49H
13. MOV ES,

47H
14. MOV AH,

456H
15. MO DL, 44H

30

ENGR.ABDUL HAFEEZ

PRACTICAL NO.15

DEMONSTATING XCHANGE INSTRUCTION SET

The general syntax for XCHG instruction set is

 XCHG REGISTER,REGISTER

Xchg instruction exchanges the contents between two memory locations or registers.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to two registers

4. Write command Mov Ax, 44h

5. Write the command Mov Bx,33h

6. Write the command Xchg Ax,Bx

7. Fill out the readings given for results

PRECAUSIONS:

8. Never use infinite loop in any coding.

9. Always emulate the code in single instruction.

10. Care fully observes the output of registers.

31

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

1 MOV AX, 44H AX = BX=

2 MOV BX,33H AX = BX=

3. XCHG AX,BX AX = BX=

32

ENGR.ABDUL HAFEEZ

PRACTICAL NO.16

DEMONSTATING PUSH INSTRUCTION SET

The general syntax for PUSH instruction set is

 PUSH REGISTER

PUSH Instruction is used to send contents of register or memory to stack segment. In stack

segment stack segment register (ss) and stack pointer register (sp) work together. Push

instruction executes in following steps

1. Stack pointer register (sp) is decremented by 2H

2. Data is copied from register to stack memory location.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command Mov Ax, 44h

5. Write the command Mov Bx,33h

6. Write command Mov Cx, 22h

7. Write command mov Dx,11h

8. For transferring contents of these registers to stack write the commands as

9. Push Ax

10. Push Bx

11. Push cx

12. Push dx

13. Fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

33

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX SS SP

1 MOV AX, 44H

2 MOV BX,33H

3 MOV CX,22H

4 MOV DX,11H

5 PUSH AX

6 PUSH BX

7 PUSH CX

8 PUSH DX

34

ENGR.ABDUL HAFEEZ

PRACTICAL NO.17

DEMONSTATING POP INSTRUCTION SET

The general syntax for POP instruction set is

 POP REGISTER

POP Instruction is used to copy contents from stack memory to register. In stack segment stack

segment register (ss) and stack pointer register (sp) work together. POP instruction executes in

following steps

1. Data is copied from stack memory to register

2. Stack Pointer is incremented by 2H

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command Mov Ax, 44h

5. Write the command Mov Bx,33h

6. Write command Mov Cx, 22h

7. Write command mov Dx,11h

8. For transferring contents of these registers to stack write the commands as

9. Push Ax

10. Push Bx

11. Push cx

12. Push dx

For copying data from stack to register write command as

13. Pop Ax

14. Pop Bx

15. Pop Cx

16. Pop Dx

17. Fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

35

ENGR.ABDUL HAFEEZ

2. Always emulate the code in single instruction

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX SS SP

1 MOV AX, 44H

2 MOV BX,33H

3 MOV CX,22H

4 MOV DX,11H

5 PUSH AX

6 PUSH BX

7 PUSH CX

8 PUSH DX

9 Pop AX

10 Pop BX

11 POP CX

12 POP DX

36

ENGR.ABDUL HAFEEZ

PRACTICAL NO.18

DEMONSTATING PUSHF INSTRUCTION SET

The general syntax for PUSHF instruction set is

 PUSHF

PUSHF Instruction is used to send the status of flag registers to stack memory. This command

has no operands.

1. Stack pointer register (sp) is decremented by 2H

2. Data is copied from register to stack memory location.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write the command as PUSHF.

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

3. Care fully observes the output of registers.

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX SS SP

1 MOV AX,5H

2 MOV BX,10H

3. Pushf

37

ENGR.ABDUL HAFEEZ

PRACTICAL NO.19

DEMONSTATING POPF INSTRUCTION SET

The general syntax for POP instruction set is

 POPF

POP Instruction is used to send status of flag registers from stack memory to flag register. This

command has no operands

1. Data is copied from stack memory to register

2. Stack Pointer is incremented by 2H

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

3. Type the instruction on the coding area of simulator.

4. Write the instruction to move contents to registers

5. POPF

6. Fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX SS SP

1 MOV AX,5H

2 MOV BX,10H

3. Pushf

38

ENGR.ABDUL HAFEEZ

PRACTICAL NO.20

DEMONSTATING ADD INSTRUCTION SET

The general syntax for ADD instruction set is

 ADD REGISTER, REGISTER

ADD instruction is used to add the contents of two registers and result is stored into Ax register.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,2H

5. Write command MOV BX,2H

6. Write command ADD AX,BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

39

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,2H

2 MOV BX,2H

3. ADD AX,BX

40

ENGR.ABDUL HAFEEZ

PRACTICAL NO.21

DEMONSTATING SUB INSTRUCTION SET

The general syntax for SUB instruction set is

 SUB DESTINATION REGISTER, SOURCE REGISTER

SUB instruction is used to subtract the contents of two registers and result is stored into Ax

register.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,6H

5. Write command MOV BX,2H

6. Write command SUB BX,AX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

41

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,6H

2 MOV BX,2H

3. SUB BX,AX

42

ENGR.ABDUL HAFEEZ

PRACTICAL NO.22

DEMONSTATING MUL INSTRUCTION SET

The general syntax for MUL instruction set is

 MUL REGISTER

MUL instruction is used to multiply contents of two registers. It uses only one register in the

operand. For example if we want to multiply two values suppose 4H X 2H, 1st of all move any

one value to AX register and 2nd value to any BX, CX or DX and apply command as MUL CX. The

contents of AX register will be automatically multiplied by the contents of BX and result will be

stored in AX.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,4H

5. Write command MOV BX,2H

6. Write command MUL BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

43

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,4H

2 MOV BX,2H

3. MUL BX

44

ENGR.ABDUL HAFEEZ

PRACTICAL NO.23

DEMONSTATING DIV INSTRUCTION SET

The general syntax for DIV instruction set is

 DIV REGISTER

DIV instruction is used to divide contents of two registers. It uses only one register in the

operand. For example if we want to divide two values suppose 5/2 , 1st of all move that number

which will be divided (dividend) into AX register and that which will divide(divisor) into BX or

CX. The quotient will be stored into AX and reminder will be stored into DX.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,8H

5. Write command MOV BX,2H

6. Write command DIV BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

45

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,8H

2 MOV BX,2H

3. DIV BX

46

ENGR.ABDUL HAFEEZ

PRACTICAL NO.24

DEMONSTATING INC INSTRUCTION SET

The general syntax for INC instruction set is

 INC REGISTER

INC instruction increases the content of register or memory by 1H. Every single INC REGISTER

increases the value of register by 1h.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,8H

5. Write command MOV BX,2H

6. Write command INC AX

7. Write command INC AX

8. Write command INC BX

9. Write command INC BX

10. Write command INC CX

11. Write command INC DX

12. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

47

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,8H

2 MOV BX,2H

3. INC AX

4. INC AX

5. INC BX

6. INC BX

7. INC CX

8. INC DX

48

ENGR.ABDUL HAFEEZ

PRACTICAL NO.25

DEMONSTATING DEC INSTRUCTION SET

The general syntax for DEC instruction set is

 DEC REGISTER

INC instruction decreases the content of register or memory by 1H. Every single INC REGISTER

decreases the value of register by 1h.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,8H

5. Write command MOV BX,2H

6. Write command DEC AX

7. Write command DEC AX

8. Write command DEC BX

9. Write command DEC BX

10. Write command DEC CX

11. Write command DEC DX

12. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction.

READINGS

49

ENGR.ABDUL HAFEEZ

S.NO COMMANDS RESULTS

 AX BX CX DX CS IP

1 MOV AX,8H

2 MOV BX,2H

3. DEC AX

4. DEC AX

5. DEC BX

6. DEC BX

7. DEC CX

8. DEC DX

50

ENGR.ABDUL HAFEEZ

PRACTICAL NO.26

DEMONSTATING NOT INSTRUCTION SET

The general syntax for NOT instruction set is

 NOT REGISTER

NOT instruction fall into category of bit-manipulation instruction set. This command is used to

take complement of binary bits.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,01010101b

5. Write command NOT AX

6. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction

51

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX CS IP

1 MOV AX,01010101B 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

2 NOT AX 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

52

ENGR.ABDUL HAFEEZ

PRACTICAL NO.27

DEMONSTATING AND INSTRUCTION SET

The general syntax for AND instruction set is

 AND REGISTER, REGISTER

AND instruction is used to manipulate and logic in microprocessor.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,01010101b

5. Write command MOV BX,00001010b

6. Write command AND AX,BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction

53

ENGR.ABDUL HAFEEZ

READINGS

S.NO COMMANDS RESULTS

 AX CS IP

1 MOV AX,01010101B 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

2 MOV BX,00000101B 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

3 AND AX,BX 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

54

ENGR.ABDUL HAFEEZ

PRACTICAL NO.28

DEMONSTATING OR INSTRUCTION SET

The general syntax for OR instruction set is

 OR REGISTER, REGISTER

OR instruction is used to manipulate OR logic in microprocessor.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,01010101b

5. Write command MOV BX,00001010b

6. Write command OR AX,BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction

READINGS

S.NO COMMANDS RESULTS

 AX CS IP

1 MOV AX,01010101B 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

2 MOV BX,00000101B 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

3 OR AX,BX 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

55

ENGR.ABDUL HAFEEZ

PRACTICAL NO.29

DEMONSTATING XOR INSTRUCTION SET

The general syntax for XOR instruction set is

 XOR REGISTER, REGISTER

XOR instruction is used to manipulate XOR logic in microprocessor.

PROCEDURE:

1. Open emu-8086 simulator and select empty work space from option.

2. Type the instruction on the coding area of simulator.

3. Write the instruction to move contents to registers

4. Write command MOV AX,01010101b

5. Write command MOV BX,00001010b

6. Write command XOR AX,BX

7. Observe output and fill out the readings given for results

PRECAUSIONS:

1. Never use infinite loop in any coding.

2. Always emulate the code in single instruction

READINGS

S.NO COMMANDS RESULTS

 AX CS IP

1 MOV AX,01010101B 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

2 MOV BX,00000101B 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

3 XOR AX,BX 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

