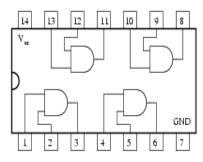
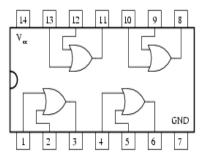
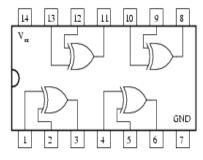

# 2012 -2013 LOGIC GATES


#### 5400/7400 Quad NAND gate

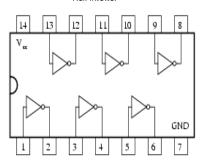



5402/7402 Quad NOR gate



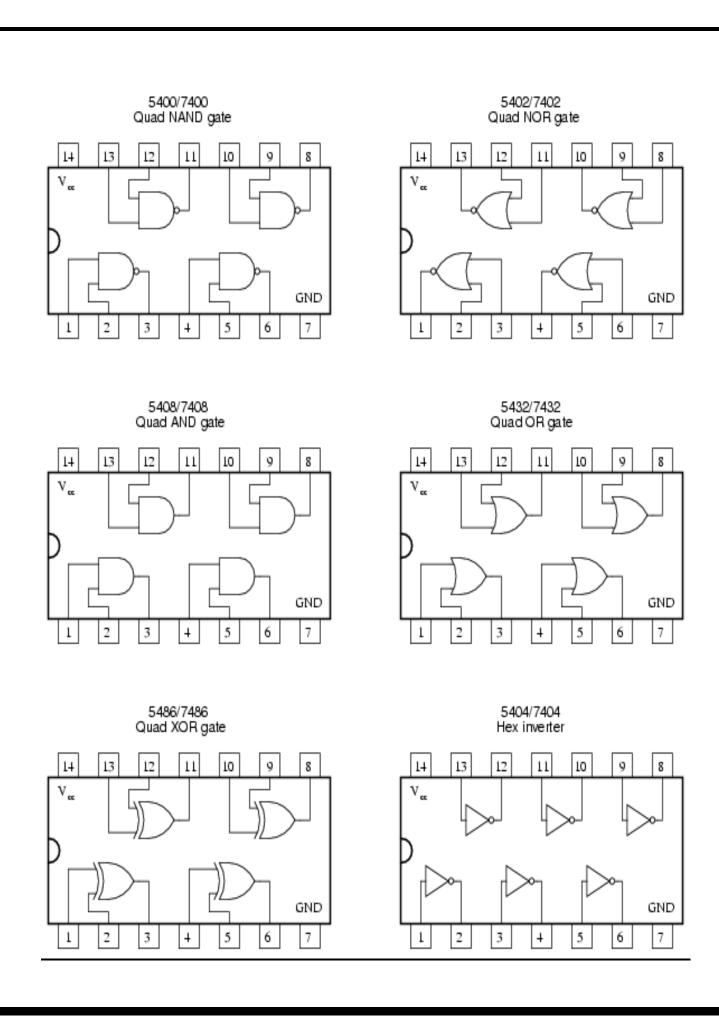

5408/7408 Quad AND gate




5432/7432 Quad OR gate



5486/7486 Quad XOR gate




5404/7404 Hex inverter



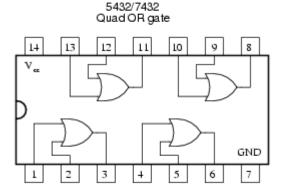
Engr. ABDUL HAFEEZ

**ELT LAB** 



# Practical # 01-

Verify IC 7432 for verifying OR function


## **Apparatus**

- 1- Digital Trainer
- 2- Jumper wire
- 3- IC 7432

## **Procedure**

- 1. Insert IC 7432 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or OVdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for OV DC.
- 4. Consult datasheet for IC 74LS32 and figure out pin configuration.
- 5. Connect 1st gate first input with toggle switch
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output for verification of OR Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.



| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 0      | OFF        |
| 0           | 1           | 1      | ON         |
| 1           | 0           | 1      | ON         |
| 1           | 1           | 1      | ON         |

Verify IC 7408 for verifying AND function

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7408

# **Procedure**

- 1. Insert IC 7408 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for 0V DC.
- 4. Consult datasheet for IC 74LS08 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output for verification of AND Logic Truth Table.

## **Precautions:**

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| 14             | 13 | 12 | 11 | 10 | 9 | 8   |
|----------------|----|----|----|----|---|-----|
| v <sub>«</sub> |    |    |    |    |   |     |
|                |    |    |    |    |   | GND |
| 1              | 2  | 3  | +  | 5  | 6 | 7   |

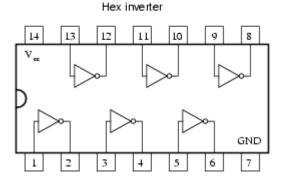
5408/7408

Quad AND gate

| <u>SW 1</u> | <u>SW 2</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|-------------|---------------|------------|
| 0           | 0           | 0             | OFF        |
| 0           | 1           | 0             | OFF        |
| 1           | 0           | 0             | OFF        |
| 1           | 1           | 1             | ON         |

Verify IC 7404 for verifying NOT function

## **Apparatus**


- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7404

# **Procedure**

- 1. Insert IC 7404 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for 0V DC.
- 4. Consult datasheet for IC 74LS04 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Connect output with LED which is serially connected with a resistor.
- 7. Apply different inputs to observe output for verification of NOT Logic Truth Table.

## **Precautions:**

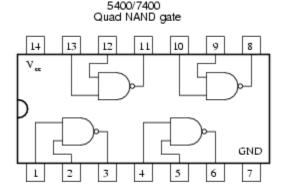
- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- Insert IC in columns between E & F on bread board.



5404/7404

| <u>SW 1</u> | OUTPUT | <u>LED</u> |
|-------------|--------|------------|
| 0           | 1      | ON         |
| 1           | 0      | OFF        |

Verify IC 7400 for verifying NAND function


## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7400

## **Procedure**

- 1. Insert IC 7400 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or OVdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for OV DC.
- 4. Consult datasheet for IC 74LS00 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch.
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output for verification of NAND Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.



| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 1      | ON         |
| 0           | 1           | 1      | ON         |
| 1           | 0           | 1      | ON         |
| 1           | 1           | 0      | OFF        |

Verify IC 7402 for verifying NOR function

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7402

# **Procedure**

- 1. Insert IC 7402 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for 0V DC.
- 4. Consult datasheet for IC 74LS02 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output for verification of NOR Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply +V<sub>CC</sub> Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

|                | Quad | NOR ga | te |   |     |
|----------------|------|--------|----|---|-----|
| 14 13          | 12   | 11     | 10 | 9 | 8   |
| v <sub>«</sub> | ~    |        | _< | Z |     |
|                |      |        | 3  |   | GND |
| 1 2            | 3    | +      | 5  | 6 | 7   |

| <u>SW 1</u> | <u>SW 2</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|-------------|---------------|------------|
| 0           | 0           | 1             | ON         |
| 0           | 1           | 0             | OFF        |
| 1           | 0           | 0             | OFF        |
| 1           | 1           | 0             | OFF        |

Verify IC 7486 for verifying Ex-OR (Exclusive OR) function.

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7486

# **Procedure**

- 1. Insert IC 7486 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for 0V DC.
- 4. Consult datasheet for IC 74LS86 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output to verify EX-OR Logic Truth Table.

#### **Precautions:**

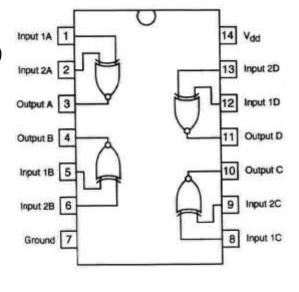
- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply +V<sub>CC</sub> Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| 14 | 13 | 12 | 11           | 10 | 9 | 8         |
|----|----|----|--------------|----|---|-----------|
| v  | [  |    | $\downarrow$ |    |   | $\supset$ |
|    |    |    |              |    |   | GND       |
| 1  | 2  | 3  | +            | 5  | 6 | 7         |

5486/7486 Quad XOR gate

| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 0      | OFF        |
| 0           | 1           | 1      | ON         |
| 1           | 0           | 1      | ON         |
| 1           | 1           | 0      | OFF        |

Verify IC 74266 for verifying EX-NOR (Exclusive NOR) function.


#### **Apparatus**

- 1- Digital Trainer
- 2- Jumper wire
- 3- IC 74266

## **Procedure**

- 1. Insert IC 74266 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for 0V DC.
- 4. Consult datasheet for IC 74LS266 and figure out pin configuration.
- 5. Connect 1<sup>st</sup> gate first input with toggle switch.
- 6. Similarly Connect 1<sup>st</sup> gate 2<sup>nd</sup> input with other toggle switch
- 7. Connect output with LED which is serially connected with a resistor.
- 8. Apply different inputs to observe output for verification of EX-NOR Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.



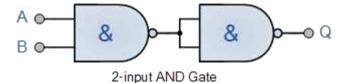
| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 1      | ON         |
| 0           | 1           | 0      | OFF        |
| 1           | 0           | 0      | OFF        |
| 1           | 1           | 1      | ON         |

Verify function of NOT gate using NAND gate.



## **Apparatus**

- 1- Digital Trainer
- 2- Jumper wire
- 3- IC 7400


## **Procedure**

- 1. Insert IC 7400 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or OVdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for OV DC.
- 4. Consult datasheet for IC 74LS00 and verify truth table to check gates is OK.
- 5. Short pin 1 & pin 2 and apply it to toggle switch SW1.
- 6. Connect pin 3 with LED for output which is serially connected with a resistor.
- 7. Apply different inputs to observe output for verification of NOT Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| <u>SW 1</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|---------------|------------|
| 0           | 1             | ON         |
| 1           | 0             | OFF        |

Verify function of AND gate using NAND gate.

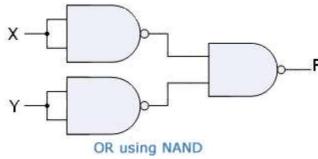


#### **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 74LS00

## **Procedure**

- 1. Insert IC 7400 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires.
- 4. Apply different input to check gate (NAND) is OK or NOT.
- 5. Connect PIN 1 with toggle switch SW 1.
- 6. Connect pin 2 with other toggle switch SW 2.
- 7. Short pin # 4 and 5 and than connect with pin 3 using jumper wires.
- 8. Connect pin 6 with LED for output which is serially connected with a resistor.
- 9. Apply different inputs to observe output for verification of AND Logic Truth Table.


- 1. Never apply V<sub>CC</sub> more than +5vdc.
- 2. Always use resistance in series with LED.
- Identify cut/ dot mark on IC correctly.
- 4. Insert IC in columns between E & F on bread board.

| <u>SW 1</u> | <u>SW 2</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|-------------|---------------|------------|
| 0           | 0           | 0             | OFF        |
| 0           | 1           | 0             | OFF        |
| 1           | 0           | 0             | OFF        |
| 1           | 1           | 1             | ON         |

Verify function of OR gate using NAND gate.

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7400



# **Procedure**

- 1. Insert IC 7400 in appropriate place on bread board.
- 2. Connect V<sub>CC</sub> (+5Vdc) to pin 14.
- 3. Connect ground or 0Vdc to pin 7 with the help of jumper wires.
- 4. Apply different input to check gate (NAND) is OK or NOT.
- 5. Short pin 1 & pin 2 and than apply it to toggle switch SW 1 using jumper wires.
- 6. Short pin 4 and 5 and than connect with toggle switch SW 2.
- 7. Short pin 3 with pin 9 and pin 6 with pin 10.
- 8. Connect pin 8 with LED for output.
- 9. Apply different inputs to observe output for verification of OR Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply +V<sub>CC</sub> Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 0      | OFF        |
| 0           | 1           | 1      | ON         |
| 1           | 0           | 1      | ON         |
| 1           | 1           | 1      | ON         |

| x — |               | F |
|-----|---------------|---|
| Y   |               |   |
|     | OR using NAND |   |

Verify function of NOT gate using NOR gate.

# $x \longrightarrow \overline{x}$

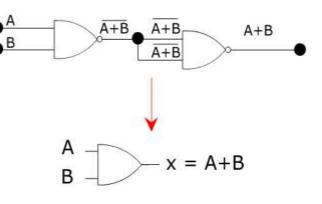
#### NOT using NOR

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7402

## **Procedure**

- 1. Insert IC 7402 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or OVdc to pin 7 starting from cut or dot side with the help of jumper wires. If possible use colors for jumper wire that is Red for +5V DC or black for OV DC.
- 4. Consult datasheet for IC 74LS02 and verify truth table to check gates is OK or NOT.
- 5. Short pin 2 & pin 3 and apply it to toggle switch SW1.
- 6. Connect pin 1 with LED for output which is serially connected with a resistor.
- 7. Apply different inputs to observe output for verification of NOT Logic Truth Table.


- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| <u>SW 1</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|---------------|------------|
| 0           | 1             | ON         |
| 1           | 0             | OFF        |

Verify function of OR gate using NOR gate.

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7402



## **Procedure**

- 1. Insert IC 7402 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wires.
- 4. Apply different input to check gate (NOR) is OK or NOT.
- 5. Connect PIN 2 with toggle switch SW 1.
- 6. Connect pin 3 with other toggle switch SW 2.
- 7. Short pin # 5 and 6 and than connect with pin 1 using jumper wires.
- 8. Connect pin 4 with LED for output which is serially connected with a resistor.
- 9. Apply different inputs to observe output for verification of OR Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply +V<sub>CC</sub> Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| <u>SW 1</u> | <u>SW 2</u> | <u>OUTPUT</u> | <u>LED</u> |
|-------------|-------------|---------------|------------|
| 0           | 0           | 0             | OFF        |
| 0           | 1           | 1             | ON         |
| 1           | 0           | 1             | ON         |
| 1           | 1           | 1             | ON         |

Verify function of AND gate using NOR gate.

## **Apparatus**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7402



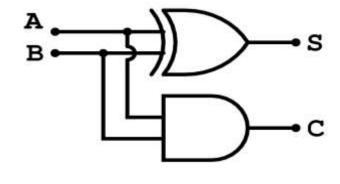
- 1. Insert IC 7402 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14.
- 3. Connect ground or 0Vdc to pin 7 using jumper wires.
- 4. Apply different input to check gate (NOR) is OK or NOT.
- 5. Short pin 2 & pin 3 and than apply it to toggle switch SW 1 using jumper wires.
- 6. Short pin 5 and 6 and than connect with toggle switch SW 2.
- 7. Short pin 1 with pin 8 and pin 4 with pin 9.
- 8. Connect pin 10 with LED for output.
- 9. Apply different inputs to observe output for verification of AND Logic Truth Table.

- Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply +V<sub>CC</sub> Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.

| x—Dong        |
|---------------|
| Y-D           |
| AND using NOR |

| <u>SW 1</u> | <u>SW 2</u> | OUTPUT | <u>LED</u> |
|-------------|-------------|--------|------------|
| 0           | 0           | 0      | OFF        |
| 0           | 1           | 0      | OFF        |
| 1           | 0           | 0      | OFF        |
| 1           | 1           | 1      | ON         |

Verify function of HALF ADDER.


## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7408 (AND)
- 4. IC 7486 (XOR)



- 1. Insert both ICs in appropriate place on bread board.
- 2. Short pin 14 of both ICs and than connects with  $V_{CC}$  (+5Vdc).
- 3. Short pin 7 of both ICs and than connects with 0Vdc.
- 4. Apply different input to check gates are OK or NOT.
- 5. Short pin 1 of both gates and than apply it to toggle switch SW 1 using jumper wires.
- 6. Short pin 2 of both gates and than connect with toggle switch SW 2.
- 7. Connect pin 3 of XOR gate with LED for SUM ( $\Sigma$ ) output.
- 8. Connect pin 3 of AND gate with another LED for CARRY output ( $C_{OUT}$ ).
- 9. Apply different inputs to observe output for verification of half adder Logic Truth Table.

- Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.



| <u>SW 1</u> | <u>SW 2</u> | <u>SUM</u> | CARRY |
|-------------|-------------|------------|-------|
| 0           | 0           | 0          | 0     |
| 0           | 1           | 1          | 0     |
| 1           | 0           | 1          | 0     |
| 1           | 1           | 0          | 1     |

Verify function of FULL ADDER.

## **Apparatus:**

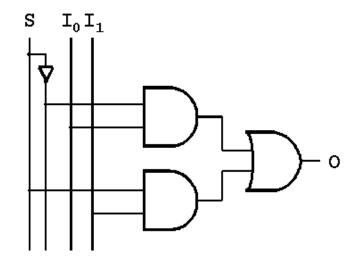
- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7408 (AND)
- 4. IC 7486 (XOR)
- 5. IC 7432 (OR)



## **Procedure:**

- 1. Insert 7486, 7408, 7432 IC in appropriate place on bread board.
- 2. Short pin 14 of all ICs and than connects with  $V_{CC}$  (+5Vdc).
- 3. Short pin 7 of all ICs and than connects with 0Vdc.
- 4. Apply different inputs to check gates in ICs are OK or NOT.
- 5. Short pin 1 of 7486 with 7408 and than apply it to toggle switch SW 1 using jumper wires.
- 6. Short pin 2 of 7486 with pin 2 of 7408 and than connect with toggle switch SW 2.
- 7. Short pin 4 & 5 of 7486 with pin 4 & 5 of 7408 respectively.
- 8. Connect pin 6 of 7486 with toggle switch SW 3.
- 9. Short pin 3 with pin 4 in 7486.
- 10. Connect pin 3 & 6 of 7408 with pin 1 & 2 of 7432 respectively.
- 11. Connect pin 6 of XOR gate with LED for SUM ( $\Sigma$ ) output.
- 12. Connect pin 3 of 7432 gate with another LED for CARRY output (C<sub>OUT</sub>).
- 13. Apply different inputs to observe output for verification of full adder Logic Truth Table.

- 1. Consciously read IC number and consult datasheet from reliable source.
- 2. Reduce the chance of short circuit.
- 3. Never apply  $+V_{CC}$  Above +5V DC.
- 4. If possible use 7805 voltage regulator.
- 5. Insert IC in columns between E & F on bread board.


| <u>SW 1</u> | <u>SW 2</u> | <u>SW 3</u> | <u>SUM (Σ)</u> | <u>С</u> оит |
|-------------|-------------|-------------|----------------|--------------|
| 0           | 0           | 0           | 0              | 0            |
| 0           | 0           | 1           | 1              | 0            |
| 0           | 1           | 0           | 1              | 0            |
| 0           | 1           | 1           | 0              | 1            |
| 1           | 0           | 0           | 1              | 0            |
| 1           | 0           | 1           | 0              | 1            |
| 1           | 1           | 0           | 0              | 1            |
| 1           | 1           | 1           | 1              | 1            |

Verify function of MUX (Multiplexer) 2\*1.

## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7408 (AND)
- 4. IC 7432 (OR)
- 5. IC 7404 (NOT)

## **Procedure:**



- 1. Insert 7408, 7432, and 7404 in appropriate place on bread board.
- 2. Short pin 14 of all ICs and than connects with  $V_{CC}$  (+5Vdc).
- 3. Short pin 7 of all ICs and than connects with 0Vdc.
- 4. Apply different input to check gates are OK or NOT.
- 5. Apply high logic i.e., 1 or +5v for data inputs at pin 1 and 4 of 7408.
- 6. Short pin 1 and 2 of 7404 with pin 2 and 5 of 7408 respectively.
- 7. Short pin 1 of 7404 with toggle switch SW 1 using jumper wire.
- 8. Short pin 3 & 4 of 7408 with pin 1 & 2 of 7432 respectively.
- 9. Connect pin 3 of 7432 with LED for output.
- 10. Apply different inputs to observe output for verification of multiplexer Logic Truth Table.

- 1. Reduce the chance of short circuit.
- 2. Never apply  $+V_{CC}$  Above +5V DC.
- 3. If possible use 7805 voltage regulator.
- 4. Insert IC in columns between E & F on bread board.

| DATA<br>INPUTS | <u>S</u> <sub>0</sub> | <u>OUTPUT</u> |
|----------------|-----------------------|---------------|
| 1              | 0                     | $D_0$         |
| 1              | 1                     | $D_1$         |

Verify function of DEMUX (De-Multiplexer) 1\*2.

## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7408 (AND)
- 4. IC 7404 (NOT)

## **Procedure:**

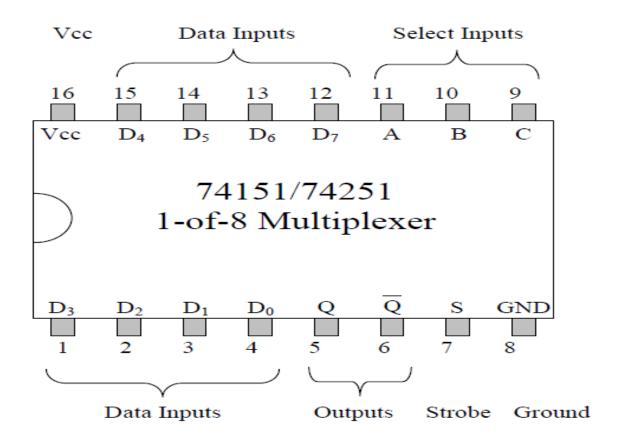
- 1. Insert 7408 and 7404 in appropriate place on bread board.
- 2. Short pin 14 of all ICs and than connects with  $V_{CC}$  (+5Vdc).
- 3. Short pin 7 of all ICs and than connects with 0Vdc.
- 4. Apply different input to check gates are OK or NOT.
- 5. Spin 1 & 4 of 7408 and apply it to toggle switch for enable input.
- 6. Short pin 1 and 2 of 7404 with pin 2 and 5 of 7408 respectively.
- 7. Short pin 1 of 7404 with toggle switch SW 1 using jumper wire.
- 8. Connect pin 3 & pin 6 of 7408 with LED for outputs.
- 9. Apply different inputs to observe output for verification of multiplexer Logic Truth Table.

- 1. Reduce the chance of short circuit.
- 2. Never apply +V<sub>CC</sub> Above +5V DC.
- 3. If possible use 7805 voltage regulator.
- 4. Insert IC in columns between E & F on bread board.

| ENABLE | <u>S</u> <sub>0</sub> | OU.            | <u>TPUT</u>    |
|--------|-----------------------|----------------|----------------|
| INPUT  |                       | D <sub>0</sub> | D <sub>1</sub> |
| 1      | 0                     | 1              | 0              |
| 1      | 1                     | 0              | 1              |

| IN    | T |                   | <u> </u>          | CH0 |
|-------|---|-------------------|-------------------|-----|
| SEL — | 7 | $\sqcup_{\infty}$ |                   |     |
|       |   |                   |                   |     |
|       |   |                   |                   | CH1 |
|       |   |                   | <br>$\mathcal{L}$ |     |

Verify function of MUX (Multiplexer) 8\*1 Using IC 74151.


## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 74151

# **Procedure:**

- 1. Insert 74151 in appropriate place on bread board.
- 2. Connect pin 16 of IC with V<sub>CC</sub> (+5Vdc).
- 3. Short pin 7 (strobe pin) with pin 8 of 74151 than connect it with 0vdc.
- 4. Read the data sheet of 74151 for pin configuration of IC.
- 5. Connect pin 1 4 & from pin 11 15 with toggle switches and apply high logics on it.
- 6. Connect pin 5 & 6 with LED's for output.
- 7. Connect pin 9, 10 & 11 with toggle switches SW1, SW2 & SW3 respectively for selection lines.
- 8. Apply different inputs to observe output for verification of multiplexer Truth Table.

- 1. Reduce the chance of short circuit.
- 2. Never apply  $+V_{CC}$  Above +5V DC.
- 3. If possible use 7805 voltage regulator.
- 4. Insert IC in columns between E & F on bread board.

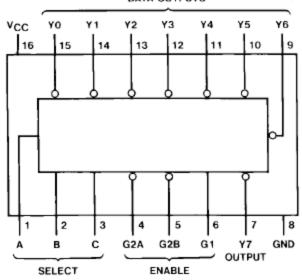


| Inputs |        |     |        | Out   | puts                        |
|--------|--------|-----|--------|-------|-----------------------------|
|        | Select | ţ   | Strobe |       |                             |
| C      | В      | A   | S      | Q     | $\overline{\mathbf{Q}}$     |
| any    | any    | any | 1      | 0     | 1                           |
| 0      | 0      | 0   | 0      | $D_0$ | $\overline{\mathrm{D_0}}$   |
| 0      | 0      | 1   | 0      | $D_1$ | $\overline{\mathrm{D_1}}$   |
| 0      | 1      | 0   | 0      | $D_2$ | $\overline{\mathrm{D}_2}$   |
| 0      | 1      | 1   | 0      | $D_3$ | $\overline{\mathrm{D_3}}$   |
| 1      | 0      | 0   | 0      | $D_4$ | $\overline{\mathrm{D_4}}$   |
| 1      | 0      | 1   | 0      | $D_5$ | $\overline{\mathrm{D}_{5}}$ |
| 1      | 1      | 0   | 0      | $D_6$ | $\overline{\mathrm{D_6}}$   |
| 1      | 1      | 1   | 0      | $D_7$ | $\overline{\mathrm{D_7}}$   |

Verify function of DE-MUX (Multiplexer) 1\*8 Using IC 74138.

## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 74151


# **Procedure:**

- 1. Insert 74138 in appropriate place on bread board.
- 2. Read the data sheet of 74138 for pin configuration of IC.
- 3. Short pin 6 with pin 16 of IC 74138 & connect it with  $V_{CC}$  (+5Vdc).
- 4. Short pin 4, 5 (EN pin) with pin 8 of 74138 than connect it with 0vdc.
- 5. Connect pin 9-15 & 6 with LED's for data outputs.
- 6. Connect pin 1, 2 & 3 with toggle switches SW1, SW2 & SW3 respectively for selection lines.
- 7. Apply different inputs to observe output for verification of de multiplexer Truth Table.

- 1. Reduce the chance of short circuit.
- 2. Never apply  $+V_{CC}$  Above +5V DC.
- 3. If possible use 7805 voltage regulator.
- 4. Insert IC in columns between E & F on bread board.

## Dual-in-Line Package

DATA OUTPUTS



LS138

|    | Inp  |        |   | Outputs |        |           |    |           |           |    |            |           |  |  |
|----|------|--------|---|---------|--------|-----------|----|-----------|-----------|----|------------|-----------|--|--|
| En | able | Select |   |         | συφιισ |           |    |           |           |    |            |           |  |  |
| G1 | G2*  | С      | В | A       | YO     | <b>Y1</b> | Y2 | <b>Y3</b> | <b>Y4</b> | Y5 | <b>Y</b> 6 | <b>Y7</b> |  |  |
| Х  | Н    | Х      | Х | Х       | Н      | Н         | Н  | Н         | Н         | Н  | Н          | Н         |  |  |
| L  | X    | Х      | Χ | Х       | Н      | Н         | Н  | Н         | Н         | Н  | Н          | Н         |  |  |
| Н  | L    | L      | L | L       | L      | Н         | Н  | Н         | Н         | Н  | Н          | Н         |  |  |
| Н  | L    | L      | L | Н       | Н      | L         | Н  | Н         | Н         | Н  | Н          | Н         |  |  |
| Н  | L    | L      | Н | L       | Н      | Н         | L  | Н         | Н         | Н  | Н          | Н         |  |  |
| Н  | L    | L      | Н | Н       | Н      | Н         | Н  | L         | Н         | Н  | Н          | Н         |  |  |
| Н  | L    | Н      | L | L       | Н      | Н         | Н  | Н         | L         | Н  | Н          | Н         |  |  |
| Н  | L    | Н      | L | Н       | Н      | Н         | Н  | Н         | Н         | L  | Н          | Н         |  |  |
| Н  | L    | Н      | Н | L       | Н      | Н         | Н  | Н         | Н         | Н  | L          | Н         |  |  |
| Н  | L    | Н      | Η | Н       | Н      | Η         | Η  | Η         | Η         | Η  | Η          | L         |  |  |

<sup>\*</sup> G2 = G2A + G2B

H = High Level, L = Low Level, X = Don't Care

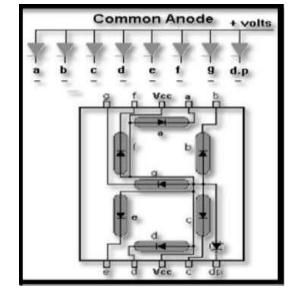
Verify function of ENCODER (Decimal to binary converter) 4\*2.

## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7432 (OR)

## **Procedure:**

- 1. Insert IC 7432 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 14 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 7 starting from cut or dot side with the help of jumper wire.
- 4. Apply different input to check gate (OR) is OK or NOT.
- 5. For decimal no. 0 no connection made with gates.
- 6. For decimal 1, connect toggle switch SW2 with pin 1.
- 7. For decimal 2, connect toggle switch SW3 with pin 4.
- 8. For decimal 3, connect toggle switch SW4 with pin 2 & 5 of IC.
- 9. Connect pin 3 & pin 6 with LED's which shows binary code of decimal input.
- 10. The 1<sup>ST</sup> gate o/p is considered as "A" and the 2<sup>nd</sup> gate o/p is considered as "B".
- 11. Apply different inputs to observe output for verification of encoder Truth Table.


- 1. Reduce the chance of short circuit.
- 2. Never apply +V<sub>CC</sub> Above +5V DC.
- 3. Insert IC in columns between E & F on bread board.

| <u>SW1</u> | <u>SW2</u> | <u>SW3</u> | <u>SW4</u> | <u>LED</u> | <u>LED</u> |  |
|------------|------------|------------|------------|------------|------------|--|
| "0"        | "1"        | "2"        | "3"        | "A"        | "B"        |  |
| 0          | 0          | 0          | 0          | 0          | 0          |  |
| 0          | 1          | 0          | 0          | 0          | 1          |  |
| 0          | 0          | 1          | 0          | 1          | 0          |  |
| 0          | 0          | 0          | 1          | 1          | 1          |  |

Seven segment display testing (Common Anode).

## **Apparatus:**

- 1. Seven segment (Common Anode).
- 2. Jumper wire
- 3. Digital Multimeter
- 4. Bread board

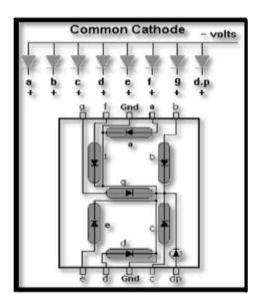


# **Procedure:**

- 1. Insert seven segment in appropriate place on bread board.
- 2. At both the ends of seven segment the middle pin is common pin.
- 3. Take multimeter and select continuity (i.e., diode testing / buzzer) range using selector switch.
- 4. Make one probe common with common terminal of seven segment & connect other probe with any other leg.
- 5. If the LED will glow & the common probe is RED than the seven segment is common anode.
- 6. If the LED will glow & the common probe is BLACK than the seven segment is common cathode.
- 7. Making positive probe as a common and connect other probe with other pins to find a, b, c, d, e, f, g & dot of seven segment using its diagram.
- 8. Lastly note out the pin out of seven segment (common anode) in your copy.

- 1. Connect probes of meter correctly i.e., black probe=common & red probe= VmAΩ jack.
- 2. Before testing check continuity range by shorting both probes.

Seven segment display testing (Common Cathode).


## **Apparatus:**

- 1. Seven segment (Common Cathode).
- 2. Jumper wire
- 3. Digital Multimeter
- 4. Bread board

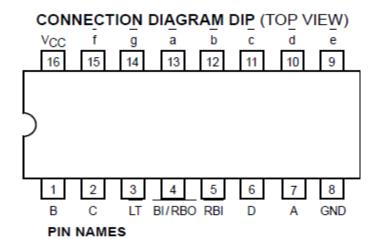


- 1. Insert seven segment in appropriate place on bread board.
- 2. At both the ends of seven segment the middle pin is common pin.
- Take multimeter and select continuity (i.e., diode testing / buzzer) range using selector switch.
- 4. Make one probe common with common terminal of seven segment & connect other probe with any other leg.
- 5. If the LED will glow & the common probe is RED than the seven segment is common anode.
- 6. If the LED will glow & the common probe is BLACK than the seven segment is common cathode.
- 7. Making negative probe as a common and connect other probe with other pins to find a, b, c, d, e, f, g & dot of seven segment using its diagram.
- 8. Lastly note out the pin out of seven segment (common cathode) in your copy.

- 1. Connect probes of meter correctly i.e., black probe=common & red probe= VmAΩ jack.
- 2. Before testing check continuity range by shorting both probes.



Verify function of DCD to 7 segment decoder/driver.


## **Apparatus:**

- 1. Digital Trainer
- 2. Jumper wire
- 3. IC 7447
- 4. 7 segment (Common Anode)

## **Procedure:**

- 1. Insert IC 7447 in appropriate place on bread board.
- 2. Connect  $V_{CC}$  (+5Vdc) to pin 16 starting from cut or dot side.
- 3. Connect ground or 0Vdc to pin 8 starting from cut or dot side with the help of jumper wire.
- 4. Consult datasheet of 7447 for its pin out.
- 5. Connect pin 9 15 i.e., a g with 7 segment respectively.
- 6. Connect pin 1,2,6,7 with toggle switches SW1, SW2, SW3 & SW4 respectively.
- 7. For decimal 3, connect toggle switch SW4 with pin 2 & 5 of IC.
- 8. Connect pin 3 & pin 6 with LED's which shows binary code of decimal input.
- 9. The  $1^{ST}$  gate o/p is considered as "A" and the  $2^{nd}$  gate o/p is considered as "B".
- 10. Apply different inputs to observe output for verification of encoder Truth Table.

- 1. Reduce the chance of short circuit.
- 2. Never apply +V<sub>CC</sub> Above +5V DC.
- 3. Insert IC in columns between E & F on bread board.



A, B, C, D BCD Inputs
RBI Ripple-Blanking Input

LT Lamp-Test Input
BI/RBO Blanking Input or
Ripple-Blanking Output

a, to g Outputs

#### TRUTH TABLE

|                           | / INPUTS - |     |   |   |   |   |        | OUTPUTS |   |     |   |     |   |   |
|---------------------------|------------|-----|---|---|---|---|--------|---------|---|-----|---|-----|---|---|
| DECIMAL<br>OR<br>FUNCTION | LΤ         | RBI | D | С | В | Α | BI/RBO | a       | b | l c | d | l e | f | g |
| 0                         | Н          | Н   | L | L | L | L | Н      | L       | L | L   | L | L   | L | Н |
| 1                         | Н          | Х   | L | L | L | H | Н      | Ξ       | L | L   | Ξ | Η   | Ι | Н |
| 2                         | Н          | X   | L | L | Н | L | Н      | L       | L | Н   | L | L   | Н | L |
| 3                         | Н          | Х   | L | L | Н | H | Н      | L       | L | L   | L | Η   | Ξ | L |
| 4                         | Н          | X   | L | Н | L | L | Н      | Н       | L | L   | Н | Н   | L | L |
| 5                         | Н          | Х   | L | Н | L | Н | Н      | L       | Ι | L   | L | Η   | L | L |
| 6                         | Н          | X   | L | Н | Н | L | Н      | Н       | Н | L   | L | L   | L | L |
| 7                         | Н          | X   | L | Н | Н | Н | Н      | L       | L | L   | Н | Н   | Η | Н |
| 8                         | Н          | X   | Н | L | L | L | Н      | L       | L | L   | L | L   | L | L |
| 9                         | Н          | Х   | Η | L | L | Н | Н      | L       | L | L   | Η | Η   | L | L |
| 10                        | Н          | X   | Ξ | L | Н | L | Н      | Ξ       | Ξ | Ξ   | L | L   | Ξ | L |
| 11                        | Н          | X   | Н | L | Н | Н | Н      | Η       | Η | L   | L | Η   | Ξ | L |
| 12                        | Н          | X   | Ι | Н | L | J | Ξ      | Ξ       | _ | Ξ   | Ξ | Ξ   | _ | L |
| 13                        | Н          | X   | Н | Н | L | Н | Н      | L       | Н | Η   | L | Н   | L | L |
| 14                        | Н          | X   | Ι | Н | Н | _ | Η      | Ξ       | Ξ | Ξ   | _ | _   | _ | L |
| <u>15</u>                 | Н          | X   | Ξ | Н | Н | Η | Н      | Ι       | Ι | Ι   | Ι | Ι   | Ι | Н |
| BI                        | X          | X   | Х | Х | Х | Х | L      | Ξ       | Ξ | Ξ   | Ξ | Ι   | Ξ | Н |
| RBI                       | Н          | L   | L | L | L | L | L      | Н       | Н | Η   | Н | Н   | Н | Н |
| LT                        | L          | X   | Х | Х | Х | Х | Н      | L       | L | L   | L | L   | L | L |

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial